N2/CO2稀释比对氢/丙烷混合物爆炸特性的影响

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chengxu You, Songping Yang and Chengcai Wei*, 
{"title":"N2/CO2稀释比对氢/丙烷混合物爆炸特性的影响","authors":"Chengxu You,&nbsp;Songping Yang and Chengcai Wei*,&nbsp;","doi":"10.1021/acsomega.4c0890710.1021/acsomega.4c08907","DOIUrl":null,"url":null,"abstract":"<p >With the advancement of hydrogen energy, hydrogen-blended fuels have gained widespread application in industrial and energy sectors, drawing significant attention to the explosion characteristics and safety risks associated with hydrogen/propane (H<sub>2</sub>/C<sub>3</sub>H<sub>8</sub>) gas mixtures. To effectively mitigate these explosion risks, this study investigates the inerting effects of various nitrogen (N<sub>2</sub>) and carbon dioxide (CO<sub>2</sub>) dilution ratios on H<sub>2</sub>/C<sub>3</sub>H<sub>8</sub> gas mixtures. The CHEMKIN-Pro software was employed to simulate the explosion and inerting properties of these mixtures, analyzing parameters such as adiabatic explosion pressure, flame temperature, concentrations of key radicals, heat release rate, and sensitivity of elementary reactions. The results indicate that an increase in the CO<sub>2</sub> dilution ratio corresponds to a linear decrease in both the adiabatic explosion pressure and the flame temperature. Furthermore, a higher CO<sub>2</sub> dilution ratio leads to a decline in the heat release rate and the generation rates of H, O, and OH radicals, with the generation rate of H radicals experiencing the most notable reduction. Sensitivity analysis of elementary reactions reveals that reaction R1: H + O<sub>2</sub> = O + OH has the most significant promoting effect, while R410: C<sub>3</sub>H<sub>8</sub> + H = H<sub>2</sub> + iC<sub>3</sub>H<sub>7</sub> exhibits a pronounced inhibitory effect. CO<sub>2</sub> effectively suppresses and transforms key intermediates through specific reaction pathways (such as R52: CH + CO<sub>2</sub> = HCO + CO and R79: CH<sub>2</sub> + CO<sub>2</sub> = CH<sub>2</sub>O + CO), thus reducing the overall heat release rate of the reactions. This study offers important theoretical insights into the inhibitory role of inert gases in H<sub>2</sub>/C<sub>3</sub>H<sub>8</sub> gas mixtures, providing a foundation for safety management and the advancement of clean energy technologies.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 8","pages":"7989–7998 7989–7998"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08907","citationCount":"0","resultStr":"{\"title\":\"Effect of N2/CO2 Dilution Ratios on Explosion Characteristics of Hydrogen/Propane Mixtures\",\"authors\":\"Chengxu You,&nbsp;Songping Yang and Chengcai Wei*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0890710.1021/acsomega.4c08907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >With the advancement of hydrogen energy, hydrogen-blended fuels have gained widespread application in industrial and energy sectors, drawing significant attention to the explosion characteristics and safety risks associated with hydrogen/propane (H<sub>2</sub>/C<sub>3</sub>H<sub>8</sub>) gas mixtures. To effectively mitigate these explosion risks, this study investigates the inerting effects of various nitrogen (N<sub>2</sub>) and carbon dioxide (CO<sub>2</sub>) dilution ratios on H<sub>2</sub>/C<sub>3</sub>H<sub>8</sub> gas mixtures. The CHEMKIN-Pro software was employed to simulate the explosion and inerting properties of these mixtures, analyzing parameters such as adiabatic explosion pressure, flame temperature, concentrations of key radicals, heat release rate, and sensitivity of elementary reactions. The results indicate that an increase in the CO<sub>2</sub> dilution ratio corresponds to a linear decrease in both the adiabatic explosion pressure and the flame temperature. Furthermore, a higher CO<sub>2</sub> dilution ratio leads to a decline in the heat release rate and the generation rates of H, O, and OH radicals, with the generation rate of H radicals experiencing the most notable reduction. Sensitivity analysis of elementary reactions reveals that reaction R1: H + O<sub>2</sub> = O + OH has the most significant promoting effect, while R410: C<sub>3</sub>H<sub>8</sub> + H = H<sub>2</sub> + iC<sub>3</sub>H<sub>7</sub> exhibits a pronounced inhibitory effect. CO<sub>2</sub> effectively suppresses and transforms key intermediates through specific reaction pathways (such as R52: CH + CO<sub>2</sub> = HCO + CO and R79: CH<sub>2</sub> + CO<sub>2</sub> = CH<sub>2</sub>O + CO), thus reducing the overall heat release rate of the reactions. This study offers important theoretical insights into the inhibitory role of inert gases in H<sub>2</sub>/C<sub>3</sub>H<sub>8</sub> gas mixtures, providing a foundation for safety management and the advancement of clean energy technologies.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 8\",\"pages\":\"7989–7998 7989–7998\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08907\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c08907\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c08907","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着氢能技术的进步,氢混合燃料在工业和能源领域得到了广泛的应用,氢/丙烷(H2/C3H8)混合气体的爆炸特性和安全风险引起了人们的广泛关注。为了有效降低这些爆炸风险,本研究考察了不同氮气(N2)和二氧化碳(CO2)稀释比例对H2/C3H8气体混合物的影响。使用CHEMKIN-Pro软件模拟了这些混合物的爆炸和惰性特性,分析了绝热爆炸压力、火焰温度、关键自由基浓度、放热速率和基本反应灵敏度等参数。结果表明,随着CO2稀释比的增大,绝热爆炸压力和火焰温度均呈线性降低。CO2稀释比越高,放热速率和H、O、OH自由基生成速率降低,其中H自由基生成速率降低最为显著。元素反应的敏感性分析表明,R1: H + O2 = O + OH的促进作用最为显著,而R410: C3H8 + H = H2 + iC3H7的抑制作用较为明显。CO2通过特定的反应途径(如R52: CH + CO2 = HCO + CO和R79: CH2 + CO2 = CH2O + CO)有效抑制和转化关键中间体,从而降低反应的总放热速率。该研究为研究惰性气体在H2/C3H8混合气体中的抑制作用提供了重要的理论见解,为安全管理和清洁能源技术的进步提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of N2/CO2 Dilution Ratios on Explosion Characteristics of Hydrogen/Propane Mixtures

With the advancement of hydrogen energy, hydrogen-blended fuels have gained widespread application in industrial and energy sectors, drawing significant attention to the explosion characteristics and safety risks associated with hydrogen/propane (H2/C3H8) gas mixtures. To effectively mitigate these explosion risks, this study investigates the inerting effects of various nitrogen (N2) and carbon dioxide (CO2) dilution ratios on H2/C3H8 gas mixtures. The CHEMKIN-Pro software was employed to simulate the explosion and inerting properties of these mixtures, analyzing parameters such as adiabatic explosion pressure, flame temperature, concentrations of key radicals, heat release rate, and sensitivity of elementary reactions. The results indicate that an increase in the CO2 dilution ratio corresponds to a linear decrease in both the adiabatic explosion pressure and the flame temperature. Furthermore, a higher CO2 dilution ratio leads to a decline in the heat release rate and the generation rates of H, O, and OH radicals, with the generation rate of H radicals experiencing the most notable reduction. Sensitivity analysis of elementary reactions reveals that reaction R1: H + O2 = O + OH has the most significant promoting effect, while R410: C3H8 + H = H2 + iC3H7 exhibits a pronounced inhibitory effect. CO2 effectively suppresses and transforms key intermediates through specific reaction pathways (such as R52: CH + CO2 = HCO + CO and R79: CH2 + CO2 = CH2O + CO), thus reducing the overall heat release rate of the reactions. This study offers important theoretical insights into the inhibitory role of inert gases in H2/C3H8 gas mixtures, providing a foundation for safety management and the advancement of clean energy technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信