纳米硅基原位堵水流体动力学研究

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mohammed Alabdrabalnabi, Murtada Saleh Aljawad*, Mustafa Al-Ramadan, Tariq Almubarak and Ayman Almohsin, 
{"title":"纳米硅基原位堵水流体动力学研究","authors":"Mohammed Alabdrabalnabi,&nbsp;Murtada Saleh Aljawad*,&nbsp;Mustafa Al-Ramadan,&nbsp;Tariq Almubarak and Ayman Almohsin,&nbsp;","doi":"10.1021/acsomega.4c0914610.1021/acsomega.4c09146","DOIUrl":null,"url":null,"abstract":"<p >This study introduces advanced nanosilica as a sustainable and economical solution for water shutoff applications. We investigated the reaction kinetics of a nanofluidic in situ gel system, namely, nanosilica, that can be deployed in a targeted zone like vuggs, natural or induced fractures, and a high permeability streak. To systematically assess this nano-based fluid, the chemical properties prior to, during, and following the gelation reaction at a specific reservoir condition were examined to accurately predict the gelation time (GT) and avoid premature gelation during fluid injection. This study evaluated the gelation reaction of the nanosilica system by monitoring viscosity development using a high-pressure/high-temperature (HPHT) viscometer. This study investigated the effect of the temperature and activator concentration on GT. The results of the experiments led to the development of a robust kinetic model, which was validated by lab experiments. The study revealed that the GT is exponentially related to the temperature and activator concentration. The reaction order of nanosilica was higher than that of the activator. The developed gelation kinetic mode is given as <i></i><math><mrow><mi>G</mi><mi>T</mi></mrow><mo>=</mo><mfrac><msub><mi>C</mi><mrow><mi>A</mi><mi>i</mi></mrow></msub><mrow><mn>6.3297</mn><mi>exp</mi><mrow><mo>(</mo><mo>−</mo><mstyle><mfrac><mrow><mn>126</mn><mo>,</mo><mn>430</mn></mrow><mrow><mi>R</mi><mi>T</mi></mrow></mfrac></mstyle><mo>)</mo></mrow><msubsup><mi>C</mi><mi>N</mi><mn>23.44</mn></msubsup><msubsup><mi>C</mi><mi>A</mi><mn>16.18</mn></msubsup></mrow></mfrac></math>. The model has a significant impact on optimizing and designing nanosilica treatment prior to field execution based on the predicted GT at specific bottomhole temperatures.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 8","pages":"8058–8065 8058–8065"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09146","citationCount":"0","resultStr":"{\"title\":\"In Situ Nanosilica-Based Fluid for Water Shutoff: A Kinetic Study\",\"authors\":\"Mohammed Alabdrabalnabi,&nbsp;Murtada Saleh Aljawad*,&nbsp;Mustafa Al-Ramadan,&nbsp;Tariq Almubarak and Ayman Almohsin,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0914610.1021/acsomega.4c09146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study introduces advanced nanosilica as a sustainable and economical solution for water shutoff applications. We investigated the reaction kinetics of a nanofluidic in situ gel system, namely, nanosilica, that can be deployed in a targeted zone like vuggs, natural or induced fractures, and a high permeability streak. To systematically assess this nano-based fluid, the chemical properties prior to, during, and following the gelation reaction at a specific reservoir condition were examined to accurately predict the gelation time (GT) and avoid premature gelation during fluid injection. This study evaluated the gelation reaction of the nanosilica system by monitoring viscosity development using a high-pressure/high-temperature (HPHT) viscometer. This study investigated the effect of the temperature and activator concentration on GT. The results of the experiments led to the development of a robust kinetic model, which was validated by lab experiments. The study revealed that the GT is exponentially related to the temperature and activator concentration. The reaction order of nanosilica was higher than that of the activator. The developed gelation kinetic mode is given as <i></i><math><mrow><mi>G</mi><mi>T</mi></mrow><mo>=</mo><mfrac><msub><mi>C</mi><mrow><mi>A</mi><mi>i</mi></mrow></msub><mrow><mn>6.3297</mn><mi>exp</mi><mrow><mo>(</mo><mo>−</mo><mstyle><mfrac><mrow><mn>126</mn><mo>,</mo><mn>430</mn></mrow><mrow><mi>R</mi><mi>T</mi></mrow></mfrac></mstyle><mo>)</mo></mrow><msubsup><mi>C</mi><mi>N</mi><mn>23.44</mn></msubsup><msubsup><mi>C</mi><mi>A</mi><mn>16.18</mn></msubsup></mrow></mfrac></math>. The model has a significant impact on optimizing and designing nanosilica treatment prior to field execution based on the predicted GT at specific bottomhole temperatures.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 8\",\"pages\":\"8058–8065 8058–8065\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09146\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c09146\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09146","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了先进的纳米二氧化硅作为堵水应用的可持续和经济的解决方案。我们研究了纳米流体原位凝胶体系(即纳米二氧化硅)的反应动力学,该体系可以部署在目标区域,如空穴、天然或诱导裂缝和高渗透条纹中。为了系统地评估这种纳米基流体,研究人员对特定储层条件下凝胶化反应之前、期间和之后的化学性质进行了研究,以准确预测凝胶化时间(GT),并避免在注入流体过程中过早凝胶化。本研究通过使用高压/高温(HPHT)粘度计监测粘度的发展来评估纳米二氧化硅体系的凝胶反应。本研究考察了温度和活化剂浓度对GT的影响。实验结果建立了稳健的动力学模型,并通过实验室实验进行了验证。研究表明,温度和活化剂浓度与GT呈指数相关。纳米二氧化硅的反应顺序高于活化剂的反应顺序。得到的凝胶动力学模式为GT=CAi6.3297exp(−126,430RT)CN23.44CA16.18。该模型对基于特定井底温度下预测的GT,在现场施工前优化和设计纳米二氧化硅处理具有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Situ Nanosilica-Based Fluid for Water Shutoff: A Kinetic Study

This study introduces advanced nanosilica as a sustainable and economical solution for water shutoff applications. We investigated the reaction kinetics of a nanofluidic in situ gel system, namely, nanosilica, that can be deployed in a targeted zone like vuggs, natural or induced fractures, and a high permeability streak. To systematically assess this nano-based fluid, the chemical properties prior to, during, and following the gelation reaction at a specific reservoir condition were examined to accurately predict the gelation time (GT) and avoid premature gelation during fluid injection. This study evaluated the gelation reaction of the nanosilica system by monitoring viscosity development using a high-pressure/high-temperature (HPHT) viscometer. This study investigated the effect of the temperature and activator concentration on GT. The results of the experiments led to the development of a robust kinetic model, which was validated by lab experiments. The study revealed that the GT is exponentially related to the temperature and activator concentration. The reaction order of nanosilica was higher than that of the activator. The developed gelation kinetic mode is given as GT=CAi6.3297exp(126,430RT)CN23.44CA16.18. The model has a significant impact on optimizing and designing nanosilica treatment prior to field execution based on the predicted GT at specific bottomhole temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信