Mn-N4仿生位点工程纳米催化剂抗氧化治疗主动脉瘤

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Di Jiang, Bowen Yang* and Jianlin Shi*, 
{"title":"Mn-N4仿生位点工程纳米催化剂抗氧化治疗主动脉瘤","authors":"Di Jiang,&nbsp;Bowen Yang* and Jianlin Shi*,&nbsp;","doi":"10.1021/acsnano.4c1580510.1021/acsnano.4c15805","DOIUrl":null,"url":null,"abstract":"<p >Oxidative stress is a major factor in the formation of lethal aortic aneurysm. Traditional molecular antioxidants can only act as reactants to scavenge reactive oxygen species (ROS) through stoichiometric reactions, which are consumed in the process, leading to unsustainable antioxidant effects. This study proposes a nanocatalytic antioxidation strategy for treating aortic aneurysm by constructing an antioxidative biomimetic nanocatalyst, which features a Mn–N<sub>4</sub> tetra-coordinated structure similar to natural heme catalase, providing a sustained catalytic antioxidation effect that can disproportionate H<sub>2</sub>O<sub>2</sub> into H<sub>2</sub>O and O<sub>2</sub>. The underlying structure–function relationship and catalytic pathway of the nanocatalyst are explored, revealing a Mn<sup>III</sup>/Mn<sup>V</sup> transition mechanism with inner-sphere proton-coupled two-electron transfer. Further cellular and animal investigations demonstrate that the highly antioxidatively active nanocatalyst is capable of eliminating aortal oxidative stress and aortitis to large extents, thus protecting vascular smooth muscle cells and synergistically promoting the morphological and functional recovery of aorta. This nanocatalytic antioxidation strategy holds promise for treating multiple cardiovascular diseases.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 8","pages":"8005–8019 8005–8019"},"PeriodicalIF":16.0000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antioxidative Aortic Aneurysm Therapy by a Mn–N4 Biomimetic Site-Engineered Nanocatalyst\",\"authors\":\"Di Jiang,&nbsp;Bowen Yang* and Jianlin Shi*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1580510.1021/acsnano.4c15805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Oxidative stress is a major factor in the formation of lethal aortic aneurysm. Traditional molecular antioxidants can only act as reactants to scavenge reactive oxygen species (ROS) through stoichiometric reactions, which are consumed in the process, leading to unsustainable antioxidant effects. This study proposes a nanocatalytic antioxidation strategy for treating aortic aneurysm by constructing an antioxidative biomimetic nanocatalyst, which features a Mn–N<sub>4</sub> tetra-coordinated structure similar to natural heme catalase, providing a sustained catalytic antioxidation effect that can disproportionate H<sub>2</sub>O<sub>2</sub> into H<sub>2</sub>O and O<sub>2</sub>. The underlying structure–function relationship and catalytic pathway of the nanocatalyst are explored, revealing a Mn<sup>III</sup>/Mn<sup>V</sup> transition mechanism with inner-sphere proton-coupled two-electron transfer. Further cellular and animal investigations demonstrate that the highly antioxidatively active nanocatalyst is capable of eliminating aortal oxidative stress and aortitis to large extents, thus protecting vascular smooth muscle cells and synergistically promoting the morphological and functional recovery of aorta. This nanocatalytic antioxidation strategy holds promise for treating multiple cardiovascular diseases.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 8\",\"pages\":\"8005–8019 8005–8019\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c15805\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c15805","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化应激是形成致命性主动脉瘤的主要因素。传统的分子抗氧化剂只能作为反应物,通过化学反应清除活性氧(ROS),在此过程中会被消耗掉,导致抗氧化效果不可持续。本研究提出了一种治疗主动脉瘤的纳米催化抗氧化策略,通过构建一种抗氧化生物仿生纳米催化剂,该催化剂具有类似于天然血红素过氧化氢酶的 Mn-N4 四配位结构,可提供持续的催化抗氧化效果,将 H2O2 分解为 H2O 和 O2。对纳米催化剂的基本结构-功能关系和催化途径进行了探索,揭示了具有内球质子耦合双电子转移的 MnIII/MnV 转换机制。进一步的细胞和动物实验证明,这种具有高度抗氧化活性的纳米催化剂能够在很大程度上消除主动脉氧化应激和主动脉炎,从而保护血管平滑肌细胞,并协同促进主动脉的形态和功能恢复。这种纳米催化抗氧化策略有望治疗多种心血管疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Antioxidative Aortic Aneurysm Therapy by a Mn–N4 Biomimetic Site-Engineered Nanocatalyst

Antioxidative Aortic Aneurysm Therapy by a Mn–N4 Biomimetic Site-Engineered Nanocatalyst

Oxidative stress is a major factor in the formation of lethal aortic aneurysm. Traditional molecular antioxidants can only act as reactants to scavenge reactive oxygen species (ROS) through stoichiometric reactions, which are consumed in the process, leading to unsustainable antioxidant effects. This study proposes a nanocatalytic antioxidation strategy for treating aortic aneurysm by constructing an antioxidative biomimetic nanocatalyst, which features a Mn–N4 tetra-coordinated structure similar to natural heme catalase, providing a sustained catalytic antioxidation effect that can disproportionate H2O2 into H2O and O2. The underlying structure–function relationship and catalytic pathway of the nanocatalyst are explored, revealing a MnIII/MnV transition mechanism with inner-sphere proton-coupled two-electron transfer. Further cellular and animal investigations demonstrate that the highly antioxidatively active nanocatalyst is capable of eliminating aortal oxidative stress and aortitis to large extents, thus protecting vascular smooth muscle cells and synergistically promoting the morphological and functional recovery of aorta. This nanocatalytic antioxidation strategy holds promise for treating multiple cardiovascular diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信