溶胶-凝胶电泳沉积tio2 -多壁碳纳米管- sio2高光电化学活性薄膜电极

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yuehai Yu,  and , Mariko Matsunaga*, 
{"title":"溶胶-凝胶电泳沉积tio2 -多壁碳纳米管- sio2高光电化学活性薄膜电极","authors":"Yuehai Yu,&nbsp; and ,&nbsp;Mariko Matsunaga*,&nbsp;","doi":"10.1021/acsomega.4c0865810.1021/acsomega.4c08658","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen production via water splitting has been extensively researched for its environmental friendliness, energy efficiency, and renewability. This study describes the development of TiO<sub>2</sub>–multiwalled carbon nanotube (MWCNT)–SiO<sub>2</sub> composite thin-film electrodes via electrophoretic deposition (EPD) from a 2-propanol solution of MWCNTs including TiO<sub>2</sub> and SiO<sub>2</sub> gels. The TiO<sub>2</sub> and SiO<sub>2</sub> gels were prepared via the sol–gel method and by mixing in varying weight ratios to enhance the efficiency of photoelectrochemical water splitting. Dual sol–gel EPD incorporates MWCNTs with a C/TiO<sub>2</sub> molar ratio of ≥0.25 while varying the TiO<sub>2</sub>/SiO<sub>2</sub> molar ratio from 5 to 14; the electronic conductivity is improved owing to the pristine graphene structure of the MWCNTs along with hydrophilicity imparted by SiO<sub>2</sub>. In addition, the volume of SiO<sub>2</sub> sol influences the anatase-to-rutile ratio, the TiO<sub>2</sub> crystal size, and chemical bonds, thereby affecting the formation of new energy levels. The optimal volume of SiO<sub>2</sub> sol results in elevated ultraviolet–visible absorbance, attributed to midgap states generated by a high anatase-to-rutile ratio and Ti–O–Si formation, further leading to a substantial effective carrier density for the photoelectrochemical water-splitting reaction. Furthermore, the valence band maximum (VBM) and conduction band minimum, estimated using ultraviolet photoelectron and ultraviolet–visible spectroscopies, exhibited a downward shift with increasing SiO<sub>2</sub> sol volume, followed by an upward shift; meanwhile, the Fermi level in a Na<sub>2</sub>SO<sub>4</sub> solution under stimulated solar light deepened. The highest photoelectrochemical performance is achieved at the optimal SiO<sub>2</sub> sol volume, where the VBM is deep enough to minimize the water-splitting overpotential, and the flat-band potential aligns with the set potential, thereby reducing band bending with a negligible hole depletion layer at the TiO<sub>2</sub>–solution interface. The best TiO<sub>2</sub>–MWCNT–SiO<sub>2</sub> composite exhibits a photocurrent ∼7.4 times higher than that of a TiO<sub>2</sub>–MWCNT electrode.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 8","pages":"7857–7875 7857–7875"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08658","citationCount":"0","resultStr":"{\"title\":\"Sol–Gel Electrophoretically Deposited TiO2–Multiwalled Carbon Nanotube–SiO2 Thin-Film Electrode with High Photoelectrochemical Activity\",\"authors\":\"Yuehai Yu,&nbsp; and ,&nbsp;Mariko Matsunaga*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0865810.1021/acsomega.4c08658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrogen production via water splitting has been extensively researched for its environmental friendliness, energy efficiency, and renewability. This study describes the development of TiO<sub>2</sub>–multiwalled carbon nanotube (MWCNT)–SiO<sub>2</sub> composite thin-film electrodes via electrophoretic deposition (EPD) from a 2-propanol solution of MWCNTs including TiO<sub>2</sub> and SiO<sub>2</sub> gels. The TiO<sub>2</sub> and SiO<sub>2</sub> gels were prepared via the sol–gel method and by mixing in varying weight ratios to enhance the efficiency of photoelectrochemical water splitting. Dual sol–gel EPD incorporates MWCNTs with a C/TiO<sub>2</sub> molar ratio of ≥0.25 while varying the TiO<sub>2</sub>/SiO<sub>2</sub> molar ratio from 5 to 14; the electronic conductivity is improved owing to the pristine graphene structure of the MWCNTs along with hydrophilicity imparted by SiO<sub>2</sub>. In addition, the volume of SiO<sub>2</sub> sol influences the anatase-to-rutile ratio, the TiO<sub>2</sub> crystal size, and chemical bonds, thereby affecting the formation of new energy levels. The optimal volume of SiO<sub>2</sub> sol results in elevated ultraviolet–visible absorbance, attributed to midgap states generated by a high anatase-to-rutile ratio and Ti–O–Si formation, further leading to a substantial effective carrier density for the photoelectrochemical water-splitting reaction. Furthermore, the valence band maximum (VBM) and conduction band minimum, estimated using ultraviolet photoelectron and ultraviolet–visible spectroscopies, exhibited a downward shift with increasing SiO<sub>2</sub> sol volume, followed by an upward shift; meanwhile, the Fermi level in a Na<sub>2</sub>SO<sub>4</sub> solution under stimulated solar light deepened. The highest photoelectrochemical performance is achieved at the optimal SiO<sub>2</sub> sol volume, where the VBM is deep enough to minimize the water-splitting overpotential, and the flat-band potential aligns with the set potential, thereby reducing band bending with a negligible hole depletion layer at the TiO<sub>2</sub>–solution interface. The best TiO<sub>2</sub>–MWCNT–SiO<sub>2</sub> composite exhibits a photocurrent ∼7.4 times higher than that of a TiO<sub>2</sub>–MWCNT electrode.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 8\",\"pages\":\"7857–7875 7857–7875\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08658\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c08658\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c08658","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水裂解制氢因其环保、节能、可再生等优点而受到广泛的研究。本研究描述了在含有TiO2和SiO2凝胶的MWCNTs的2-丙醇溶液中,通过电泳沉积(EPD)制备TiO2 -多壁碳纳米管(MWCNT) -SiO2复合薄膜电极。通过溶胶-凝胶法和不同质量比的混合制备TiO2和SiO2凝胶,以提高光电化学水分解的效率。双溶胶-凝胶EPD采用C/TiO2摩尔比≥0.25的MWCNTs, TiO2/SiO2摩尔比在5 ~ 14之间变化;由于MWCNTs的原始石墨烯结构以及SiO2赋予的亲水性,其电子导电性得到了改善。此外,SiO2溶胶的体积会影响锐钛矿与金红石的比例、TiO2晶粒尺寸和化学键,从而影响新能级的形成。由于高锐钛矿与金红石的比例和Ti-O-Si的形成所产生的间隙状态,SiO2溶胶的最佳体积导致了紫外可见吸光度的提高,进一步导致了光电化学水分解反应的有效载流子密度的增加。此外,利用紫外光电子光谱和紫外可见光谱估算的价带最大值和导带最小值随SiO2溶胶体积的增加呈现先下降后上升的变化趋势;同时,太阳光照下Na2SO4溶液中的费米能级加深。在最佳SiO2溶胶体积下,VBM足够深以最小化水分解过电位,并且平带电位与设定电位一致,从而减少带弯曲,而tio2溶液界面上的空穴耗尽层可以忽略。最佳TiO2-MWCNT - sio2复合材料的光电流比TiO2-MWCNT电极高7.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sol–Gel Electrophoretically Deposited TiO2–Multiwalled Carbon Nanotube–SiO2 Thin-Film Electrode with High Photoelectrochemical Activity

Hydrogen production via water splitting has been extensively researched for its environmental friendliness, energy efficiency, and renewability. This study describes the development of TiO2–multiwalled carbon nanotube (MWCNT)–SiO2 composite thin-film electrodes via electrophoretic deposition (EPD) from a 2-propanol solution of MWCNTs including TiO2 and SiO2 gels. The TiO2 and SiO2 gels were prepared via the sol–gel method and by mixing in varying weight ratios to enhance the efficiency of photoelectrochemical water splitting. Dual sol–gel EPD incorporates MWCNTs with a C/TiO2 molar ratio of ≥0.25 while varying the TiO2/SiO2 molar ratio from 5 to 14; the electronic conductivity is improved owing to the pristine graphene structure of the MWCNTs along with hydrophilicity imparted by SiO2. In addition, the volume of SiO2 sol influences the anatase-to-rutile ratio, the TiO2 crystal size, and chemical bonds, thereby affecting the formation of new energy levels. The optimal volume of SiO2 sol results in elevated ultraviolet–visible absorbance, attributed to midgap states generated by a high anatase-to-rutile ratio and Ti–O–Si formation, further leading to a substantial effective carrier density for the photoelectrochemical water-splitting reaction. Furthermore, the valence band maximum (VBM) and conduction band minimum, estimated using ultraviolet photoelectron and ultraviolet–visible spectroscopies, exhibited a downward shift with increasing SiO2 sol volume, followed by an upward shift; meanwhile, the Fermi level in a Na2SO4 solution under stimulated solar light deepened. The highest photoelectrochemical performance is achieved at the optimal SiO2 sol volume, where the VBM is deep enough to minimize the water-splitting overpotential, and the flat-band potential aligns with the set potential, thereby reducing band bending with a negligible hole depletion layer at the TiO2–solution interface. The best TiO2–MWCNT–SiO2 composite exhibits a photocurrent ∼7.4 times higher than that of a TiO2–MWCNT electrode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信