目标时变功能连通性

IF 3.5 2区 医学 Q1 NEUROIMAGING
Sonsoles Alonso, Luca Cocchi, Luke J. Hearne, James M. Shine, Diego Vidaurre
{"title":"目标时变功能连通性","authors":"Sonsoles Alonso,&nbsp;Luca Cocchi,&nbsp;Luke J. Hearne,&nbsp;James M. Shine,&nbsp;Diego Vidaurre","doi":"10.1002/hbm.70157","DOIUrl":null,"url":null,"abstract":"<p>To elucidate the neurobiological basis of cognition, which is dynamic and evolving, various methods have emerged to characterise time-varying functional connectivity (FC) and track the temporal evolution of functional networks. However, given a selection of regions, many of these methods are based on modelling all possible pairwise connections, diluting a potential focus of interest on individual connections. This is the case with the hidden Markov model (HMM), which relies on region-by-region covariance matrices across all pairs of selected regions, assuming that fluctuations in FC occur across all investigated connections; that is, that all connections are locked to the same temporal pattern. To address this limitation, we introduce <i>Targeted Time-Varying FC</i> (T-TVFC), a variant of the HMM that explicitly models the temporal fluctuations between two sets of regions in a targeted fashion, rather than across the entire connectivity matrix. In this study, we apply T-TVFC to both simulated and real-world data. Specifically, we investigate thalamocortical connectivity, hypothesising distinct temporal signatures compared to corticocortical networks. Given the thalamus's role as a critical hub, thalamocortical connections might contain unique information about cognitive processing that could be overlooked in a coarser representation. We tested these hypotheses on high-field functional magnetic resonance data from 60 participants engaged in a reasoning task with varying complexity levels. Our findings demonstrate that the time-varying interactions captured by T-TVFC contain task-related information not detected by more traditional decompositions.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70157","citationCount":"0","resultStr":"{\"title\":\"Targeted Time-Varying Functional Connectivity\",\"authors\":\"Sonsoles Alonso,&nbsp;Luca Cocchi,&nbsp;Luke J. Hearne,&nbsp;James M. Shine,&nbsp;Diego Vidaurre\",\"doi\":\"10.1002/hbm.70157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To elucidate the neurobiological basis of cognition, which is dynamic and evolving, various methods have emerged to characterise time-varying functional connectivity (FC) and track the temporal evolution of functional networks. However, given a selection of regions, many of these methods are based on modelling all possible pairwise connections, diluting a potential focus of interest on individual connections. This is the case with the hidden Markov model (HMM), which relies on region-by-region covariance matrices across all pairs of selected regions, assuming that fluctuations in FC occur across all investigated connections; that is, that all connections are locked to the same temporal pattern. To address this limitation, we introduce <i>Targeted Time-Varying FC</i> (T-TVFC), a variant of the HMM that explicitly models the temporal fluctuations between two sets of regions in a targeted fashion, rather than across the entire connectivity matrix. In this study, we apply T-TVFC to both simulated and real-world data. Specifically, we investigate thalamocortical connectivity, hypothesising distinct temporal signatures compared to corticocortical networks. Given the thalamus's role as a critical hub, thalamocortical connections might contain unique information about cognitive processing that could be overlooked in a coarser representation. We tested these hypotheses on high-field functional magnetic resonance data from 60 participants engaged in a reasoning task with varying complexity levels. Our findings demonstrate that the time-varying interactions captured by T-TVFC contain task-related information not detected by more traditional decompositions.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 4\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70157\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70157\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70157","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

为了阐明动态和不断进化的认知的神经生物学基础,出现了各种方法来表征时变功能连接(FC)并跟踪功能网络的时间演变。然而,在给定区域的选择下,这些方法中的许多都是基于对所有可能的成对连接进行建模,从而淡化了对单个连接的潜在关注。这就是隐马尔可夫模型(HMM)的情况,它依赖于所有对选定区域的逐个区域协方差矩阵,假设FC的波动发生在所有研究的连接中;也就是说,所有的连接都被锁定在相同的时间模式上。为了解决这一限制,我们引入了目标时变FC (T-TVFC),这是HMM的一种变体,它以目标方式显式地模拟两组区域之间的时间波动,而不是跨整个连接矩阵。在本研究中,我们将T-TVFC应用于模拟和真实数据。具体来说,我们研究了丘脑皮质的连通性,假设与皮质皮质网络相比有不同的时间特征。鉴于丘脑作为关键中枢的作用,丘脑皮质连接可能包含有关认知处理的独特信息,这些信息可能在粗略的表示中被忽视。我们对60名参与不同复杂程度推理任务的参与者的高场功能磁共振数据进行了测试。我们的研究结果表明,T-TVFC捕获的时变相互作用包含了传统分解无法检测到的任务相关信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Targeted Time-Varying Functional Connectivity

Targeted Time-Varying Functional Connectivity

To elucidate the neurobiological basis of cognition, which is dynamic and evolving, various methods have emerged to characterise time-varying functional connectivity (FC) and track the temporal evolution of functional networks. However, given a selection of regions, many of these methods are based on modelling all possible pairwise connections, diluting a potential focus of interest on individual connections. This is the case with the hidden Markov model (HMM), which relies on region-by-region covariance matrices across all pairs of selected regions, assuming that fluctuations in FC occur across all investigated connections; that is, that all connections are locked to the same temporal pattern. To address this limitation, we introduce Targeted Time-Varying FC (T-TVFC), a variant of the HMM that explicitly models the temporal fluctuations between two sets of regions in a targeted fashion, rather than across the entire connectivity matrix. In this study, we apply T-TVFC to both simulated and real-world data. Specifically, we investigate thalamocortical connectivity, hypothesising distinct temporal signatures compared to corticocortical networks. Given the thalamus's role as a critical hub, thalamocortical connections might contain unique information about cognitive processing that could be overlooked in a coarser representation. We tested these hypotheses on high-field functional magnetic resonance data from 60 participants engaged in a reasoning task with varying complexity levels. Our findings demonstrate that the time-varying interactions captured by T-TVFC contain task-related information not detected by more traditional decompositions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信