辛线性群与一般线性群的自然零锥

IF 1 2区 数学 Q1 MATHEMATICS
Vaibhav Pandey, Yevgeniya Tarasova, Uli Walther
{"title":"辛线性群与一般线性群的自然零锥","authors":"Vaibhav Pandey,&nbsp;Yevgeniya Tarasova,&nbsp;Uli Walther","doi":"10.1112/jlms.70078","DOIUrl":null,"url":null,"abstract":"<p>Consider a group acting on a polynomial ring <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> over a field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathbb {K}$</annotation>\n </semantics></math> by degree-preserving <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathbb {K}$</annotation>\n </semantics></math>-algebra automorphisms. Several key properties of the invariant ring can be deduced by studying the <i>nullcone</i> of the action, that is, the vanishing locus of all nonconstant homogeneous invariant polynomials. These properties include the finite generation of the invariant ring and the purity of its embedding in <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>. In this article, we study the nullcones arising from the natural actions of the symplectic and general linear groups. For the natural representation of the symplectic group (via copies of the regular representation), the invariant ring is a generic Pfaffian ring. We show that the nullcone of this embedding is <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-regular in positive characteristic. Independent of characteristic, we give a complete description of the divisor class group of the nullcone and determine precisely when it is Gorenstein. For the natural representation of the general linear group (via copies of the regular representation and copies of its dual), the invariant ring is a generic determinantal ring. The nullcone of this embedding is typically non-equidimensional; its irreducible components are the varieties of complexes introduced by Buchsbaum and Eisenbud. We show that each of these irreducible components are <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-regular in positive characteristic. We also show that the Frobenius splittings of the varieties of complexes may be chosen compatibly so that the nullcone is <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-pure.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70078","citationCount":"0","resultStr":"{\"title\":\"On the natural nullcones of the symplectic and general linear groups\",\"authors\":\"Vaibhav Pandey,&nbsp;Yevgeniya Tarasova,&nbsp;Uli Walther\",\"doi\":\"10.1112/jlms.70078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a group acting on a polynomial ring <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> over a field <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathbb {K}$</annotation>\\n </semantics></math> by degree-preserving <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathbb {K}$</annotation>\\n </semantics></math>-algebra automorphisms. Several key properties of the invariant ring can be deduced by studying the <i>nullcone</i> of the action, that is, the vanishing locus of all nonconstant homogeneous invariant polynomials. These properties include the finite generation of the invariant ring and the purity of its embedding in <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>. In this article, we study the nullcones arising from the natural actions of the symplectic and general linear groups. For the natural representation of the symplectic group (via copies of the regular representation), the invariant ring is a generic Pfaffian ring. We show that the nullcone of this embedding is <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-regular in positive characteristic. Independent of characteristic, we give a complete description of the divisor class group of the nullcone and determine precisely when it is Gorenstein. For the natural representation of the general linear group (via copies of the regular representation and copies of its dual), the invariant ring is a generic determinantal ring. The nullcone of this embedding is typically non-equidimensional; its irreducible components are the varieties of complexes introduced by Buchsbaum and Eisenbud. We show that each of these irreducible components are <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-regular in positive characteristic. We also show that the Frobenius splittings of the varieties of complexes may be chosen compatibly so that the nullcone is <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-pure.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70078\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70078\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70078","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑域K $\mathbb {K}$上的多项式环S$ S$上的保度数K $\mathbb {K}$ -代数自同构的群。通过研究作用的零锥,即所有非常齐次不变多项式的消失轨迹,可以推导出不变环的几个关键性质。这些性质包括不变环的有限生成及其在S$ S$内嵌的纯粹性。本文研究了辛线性群和一般线性群的自然作用所产生的零锥。对于辛群的自然表示(通过正则表示的副本),不变环是一个泛型的普氏环。我们证明了该嵌入的零锥在正特征上是F$ F$正则的。在不考虑特征的情况下,给出了零圆锥的除数类群的完整描述,并精确地确定了零圆锥何时为Gorenstein。对于一般线性群的自然表示(通过正则表示的拷贝及其对偶的拷贝),不变环是一般行列式环。这种嵌入的零锥通常是非等维的;其不可约的组成部分是由Buchsbaum和Eisenbud引入的各种复合物。我们证明了这些不可约分量在正特征上都是F$ F$正则的。我们还证明了各种配合物的Frobenius分裂可以相容地选择,从而使零锥是F$ F$纯的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the natural nullcones of the symplectic and general linear groups

Consider a group acting on a polynomial ring S $S$ over a field K $\mathbb {K}$ by degree-preserving K $\mathbb {K}$ -algebra automorphisms. Several key properties of the invariant ring can be deduced by studying the nullcone of the action, that is, the vanishing locus of all nonconstant homogeneous invariant polynomials. These properties include the finite generation of the invariant ring and the purity of its embedding in S $S$ . In this article, we study the nullcones arising from the natural actions of the symplectic and general linear groups. For the natural representation of the symplectic group (via copies of the regular representation), the invariant ring is a generic Pfaffian ring. We show that the nullcone of this embedding is F $F$ -regular in positive characteristic. Independent of characteristic, we give a complete description of the divisor class group of the nullcone and determine precisely when it is Gorenstein. For the natural representation of the general linear group (via copies of the regular representation and copies of its dual), the invariant ring is a generic determinantal ring. The nullcone of this embedding is typically non-equidimensional; its irreducible components are the varieties of complexes introduced by Buchsbaum and Eisenbud. We show that each of these irreducible components are F $F$ -regular in positive characteristic. We also show that the Frobenius splittings of the varieties of complexes may be chosen compatibly so that the nullcone is F $F$ -pure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信