基于深度强化学习的多工位多机器人任务分配方法

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Junnan Zhang, Ke Wang, Chaoxu Mu
{"title":"基于深度强化学习的多工位多机器人任务分配方法","authors":"Junnan Zhang,&nbsp;Ke Wang,&nbsp;Chaoxu Mu","doi":"10.1049/cit2.12394","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the problem of multi-station multi-robot spot welding task assignment, and proposes a deep reinforcement learning (DRL) framework, which is made up of a public graph attention network and independent policy networks. The graph of welding spots distribution is encoded using the graph attention network. Independent policy networks with attention mechanism as a decoder can handle the encoded graph and decide to assign robots to different tasks. The policy network is used to convert the large scale welding spots allocation problem to multiple small scale single-robot welding path planning problems, and the path planning problem is quickly solved through existing methods. Then, the model is trained through reinforcement learning. In addition, the task balancing method is used to allocate tasks to multiple stations. The proposed algorithm is compared with classical algorithms, and the results show that the algorithm based on DRL can produce higher quality solutions.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"10 1","pages":"134-146"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12394","citationCount":"0","resultStr":"{\"title\":\"Multi-station multi-robot task assignment method based on deep reinforcement learning\",\"authors\":\"Junnan Zhang,&nbsp;Ke Wang,&nbsp;Chaoxu Mu\",\"doi\":\"10.1049/cit2.12394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on the problem of multi-station multi-robot spot welding task assignment, and proposes a deep reinforcement learning (DRL) framework, which is made up of a public graph attention network and independent policy networks. The graph of welding spots distribution is encoded using the graph attention network. Independent policy networks with attention mechanism as a decoder can handle the encoded graph and decide to assign robots to different tasks. The policy network is used to convert the large scale welding spots allocation problem to multiple small scale single-robot welding path planning problems, and the path planning problem is quickly solved through existing methods. Then, the model is trained through reinforcement learning. In addition, the task balancing method is used to allocate tasks to multiple stations. The proposed algorithm is compared with classical algorithms, and the results show that the algorithm based on DRL can produce higher quality solutions.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"10 1\",\"pages\":\"134-146\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12394\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12394\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12394","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

针对多工位多机器人点焊任务分配问题,提出了一种由公共图关注网络和独立策略网络组成的深度强化学习框架。利用图注意网络对焊点分布图进行编码。以注意力机制作为解码器的独立策略网络可以处理编码后的图,并决定给机器人分配不同的任务。利用策略网络将大规模焊点分配问题转化为多个小型单机器人焊接路径规划问题,并通过现有方法快速求解路径规划问题。然后通过强化学习对模型进行训练。此外,还采用任务均衡的方法将任务分配到多个站点。将该算法与经典算法进行了比较,结果表明基于DRL的算法可以得到更高质量的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-station multi-robot task assignment method based on deep reinforcement learning

Multi-station multi-robot task assignment method based on deep reinforcement learning

This paper focuses on the problem of multi-station multi-robot spot welding task assignment, and proposes a deep reinforcement learning (DRL) framework, which is made up of a public graph attention network and independent policy networks. The graph of welding spots distribution is encoded using the graph attention network. Independent policy networks with attention mechanism as a decoder can handle the encoded graph and decide to assign robots to different tasks. The policy network is used to convert the large scale welding spots allocation problem to multiple small scale single-robot welding path planning problems, and the path planning problem is quickly solved through existing methods. Then, the model is trained through reinforcement learning. In addition, the task balancing method is used to allocate tasks to multiple stations. The proposed algorithm is compared with classical algorithms, and the results show that the algorithm based on DRL can produce higher quality solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信