沿河流走廊的优先地下水排放是被忽视的温室气体来源

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
A. M. Bisson, F. Liu, E. M. Moore, M. A. Briggs, A. M. Helton
{"title":"沿河流走廊的优先地下水排放是被忽视的温室气体来源","authors":"A. M. Bisson,&nbsp;F. Liu,&nbsp;E. M. Moore,&nbsp;M. A. Briggs,&nbsp;A. M. Helton","doi":"10.1029/2024JG008395","DOIUrl":null,"url":null,"abstract":"<p>Groundwater delivery of greenhouse gases (GHGs) to stream banks and riparian areas, before mixing with surface waters, has not been well quantified. We measured preferential groundwater delivery of GHGs to stream banks within three stream reaches, and found that stream banks with discharging groundwater emitted more CO<sub>2</sub> and were sources of N<sub>2</sub>O compared to stream banks without actively discharging groundwater, which emitted less CO<sub>2</sub> and were N<sub>2</sub>O sinks. At one of our stream reaches, groundwater CO<sub>2</sub> and N<sub>2</sub>O concentrations were 1.4–19.2 and 1.1–40.6 times higher than those in surface water, respectively, and groundwater delivery rates of CO<sub>2</sub> and N<sub>2</sub>O were 1.5 and 1.6 times higher than surface water emissions per unit area. On average, 21% (range 0%–100%) of CO<sub>2</sub> and N<sub>2</sub>O were emitted at the stream bank before mixing with surface waters. Preferential groundwater GHG emissions may contribute substantially to stream corridor emissions and may be underestimated when using a channel-centric approach to estimate riverine GHG budgets.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preferential Groundwater Discharges Along Stream Corridors Are Disregarded Sources of Greenhouse Gases\",\"authors\":\"A. M. Bisson,&nbsp;F. Liu,&nbsp;E. M. Moore,&nbsp;M. A. Briggs,&nbsp;A. M. Helton\",\"doi\":\"10.1029/2024JG008395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Groundwater delivery of greenhouse gases (GHGs) to stream banks and riparian areas, before mixing with surface waters, has not been well quantified. We measured preferential groundwater delivery of GHGs to stream banks within three stream reaches, and found that stream banks with discharging groundwater emitted more CO<sub>2</sub> and were sources of N<sub>2</sub>O compared to stream banks without actively discharging groundwater, which emitted less CO<sub>2</sub> and were N<sub>2</sub>O sinks. At one of our stream reaches, groundwater CO<sub>2</sub> and N<sub>2</sub>O concentrations were 1.4–19.2 and 1.1–40.6 times higher than those in surface water, respectively, and groundwater delivery rates of CO<sub>2</sub> and N<sub>2</sub>O were 1.5 and 1.6 times higher than surface water emissions per unit area. On average, 21% (range 0%–100%) of CO<sub>2</sub> and N<sub>2</sub>O were emitted at the stream bank before mixing with surface waters. Preferential groundwater GHG emissions may contribute substantially to stream corridor emissions and may be underestimated when using a channel-centric approach to estimate riverine GHG budgets.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"130 3\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008395\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008395","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

地下水在与地表水混合之前向河岸和河岸地区输送的温室气体(GHGs)尚未得到很好的量化。我们测量了三条河段内地下水对温室气体的优先输送,发现与不主动排放地下水的河滩相比,排放地下水的河滩排放更多的CO2,是N2O的来源,而不主动排放地下水的河滩排放较少的CO2,是N2O的汇。其中,地下水CO2和N2O浓度分别是地表水的1.4 ~ 19.2倍和1.1 ~ 40.6倍,单位面积地下水CO2和N2O的输送率分别是地表水排放量的1.5倍和1.6倍。在与地表水混合之前,平均有21%(范围为0%-100%)的CO2和N2O在河岸排放。优先地下水温室气体排放可能对河流廊道排放有很大贡献,在使用以渠道为中心的方法估计河流温室气体预算时可能被低估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preferential Groundwater Discharges Along Stream Corridors Are Disregarded Sources of Greenhouse Gases

Groundwater delivery of greenhouse gases (GHGs) to stream banks and riparian areas, before mixing with surface waters, has not been well quantified. We measured preferential groundwater delivery of GHGs to stream banks within three stream reaches, and found that stream banks with discharging groundwater emitted more CO2 and were sources of N2O compared to stream banks without actively discharging groundwater, which emitted less CO2 and were N2O sinks. At one of our stream reaches, groundwater CO2 and N2O concentrations were 1.4–19.2 and 1.1–40.6 times higher than those in surface water, respectively, and groundwater delivery rates of CO2 and N2O were 1.5 and 1.6 times higher than surface water emissions per unit area. On average, 21% (range 0%–100%) of CO2 and N2O were emitted at the stream bank before mixing with surface waters. Preferential groundwater GHG emissions may contribute substantially to stream corridor emissions and may be underestimated when using a channel-centric approach to estimate riverine GHG budgets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信