具有多重颤振表示的仿射非约微分与模

IF 1 2区 数学 Q1 MATHEMATICS
Eloise Hamilton, Victoria Hoskins, Joshua Jackson
{"title":"具有多重颤振表示的仿射非约微分与模","authors":"Eloise Hamilton,&nbsp;Victoria Hoskins,&nbsp;Joshua Jackson","doi":"10.1112/jlms.70099","DOIUrl":null,"url":null,"abstract":"<p>We give an explicit approach to quotienting affine varieties by linear actions of linear algebraic groups with graded unipotent radical, using results from projective Non-Reductive GIT. Our quotients come with explicit projective completions, whose boundaries we interpret in terms of the original action. As an application, we construct moduli spaces of semistable representations of quivers with multiplicities subject to certain conditions, which always hold in the toric case for a generic stability condition.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70099","citationCount":"0","resultStr":"{\"title\":\"Affine Non-Reductive GIT and moduli of representations of quivers with multiplicities\",\"authors\":\"Eloise Hamilton,&nbsp;Victoria Hoskins,&nbsp;Joshua Jackson\",\"doi\":\"10.1112/jlms.70099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give an explicit approach to quotienting affine varieties by linear actions of linear algebraic groups with graded unipotent radical, using results from projective Non-Reductive GIT. Our quotients come with explicit projective completions, whose boundaries we interpret in terms of the original action. As an application, we construct moduli spaces of semistable representations of quivers with multiplicities subject to certain conditions, which always hold in the toric case for a generic stability condition.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70099\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70099\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70099","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了一个明确的方法,通过线性代数群的线性作用来引用仿射变量,具有梯度的单幂根,利用投影非约GIT的结果。我们的商带有明确的投影补全,我们根据原始动作来解释其边界。作为应用,我们构造了具有复数的颤振的半稳定表示的模空间,这些模空间在一般稳定条件的环面情况下总是成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Affine Non-Reductive GIT and moduli of representations of quivers with multiplicities

Affine Non-Reductive GIT and moduli of representations of quivers with multiplicities

We give an explicit approach to quotienting affine varieties by linear actions of linear algebraic groups with graded unipotent radical, using results from projective Non-Reductive GIT. Our quotients come with explicit projective completions, whose boundaries we interpret in terms of the original action. As an application, we construct moduli spaces of semistable representations of quivers with multiplicities subject to certain conditions, which always hold in the toric case for a generic stability condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信