弱一致完美域上的Bergman函数

IF 1 2区 数学 Q1 MATHEMATICS
Yuanpu Xiong, Zhiyuan Zheng
{"title":"弱一致完美域上的Bergman函数","authors":"Yuanpu Xiong,&nbsp;Zhiyuan Zheng","doi":"10.1112/jlms.70107","DOIUrl":null,"url":null,"abstract":"<p>We construct two classes of Zalcman-type domains, on which the Bergman distance functions exhibit certain pre-described boundary behaviors. Such examples also lead to generalizations of uniform perfectness in the sense of Pommerenke. These weakly uniformly perfect conditions can be characterized in terms of the logarithm capacity. We obtain lower estimates for the boundary behaviors of Bergman kernel functions on such domains.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bergman functions on weakly uniformly perfect domains\",\"authors\":\"Yuanpu Xiong,&nbsp;Zhiyuan Zheng\",\"doi\":\"10.1112/jlms.70107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct two classes of Zalcman-type domains, on which the Bergman distance functions exhibit certain pre-described boundary behaviors. Such examples also lead to generalizations of uniform perfectness in the sense of Pommerenke. These weakly uniformly perfect conditions can be characterized in terms of the logarithm capacity. We obtain lower estimates for the boundary behaviors of Bergman kernel functions on such domains.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70107\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70107","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了两类zalcman型域,在这两类域上Bergman距离函数表现出某些预先描述的边界行为。这样的例子也导致了统一完美性在Pommerenke意义上的一般化。这些弱一致完美条件可以用对数容量来表示。我们得到了在这些区域上Bergman核函数边界行为的较低估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bergman functions on weakly uniformly perfect domains

We construct two classes of Zalcman-type domains, on which the Bergman distance functions exhibit certain pre-described boundary behaviors. Such examples also lead to generalizations of uniform perfectness in the sense of Pommerenke. These weakly uniformly perfect conditions can be characterized in terms of the logarithm capacity. We obtain lower estimates for the boundary behaviors of Bergman kernel functions on such domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信