{"title":"弱一致完美域上的Bergman函数","authors":"Yuanpu Xiong, Zhiyuan Zheng","doi":"10.1112/jlms.70107","DOIUrl":null,"url":null,"abstract":"<p>We construct two classes of Zalcman-type domains, on which the Bergman distance functions exhibit certain pre-described boundary behaviors. Such examples also lead to generalizations of uniform perfectness in the sense of Pommerenke. These weakly uniformly perfect conditions can be characterized in terms of the logarithm capacity. We obtain lower estimates for the boundary behaviors of Bergman kernel functions on such domains.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bergman functions on weakly uniformly perfect domains\",\"authors\":\"Yuanpu Xiong, Zhiyuan Zheng\",\"doi\":\"10.1112/jlms.70107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct two classes of Zalcman-type domains, on which the Bergman distance functions exhibit certain pre-described boundary behaviors. Such examples also lead to generalizations of uniform perfectness in the sense of Pommerenke. These weakly uniformly perfect conditions can be characterized in terms of the logarithm capacity. We obtain lower estimates for the boundary behaviors of Bergman kernel functions on such domains.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70107\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70107","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bergman functions on weakly uniformly perfect domains
We construct two classes of Zalcman-type domains, on which the Bergman distance functions exhibit certain pre-described boundary behaviors. Such examples also lead to generalizations of uniform perfectness in the sense of Pommerenke. These weakly uniformly perfect conditions can be characterized in terms of the logarithm capacity. We obtain lower estimates for the boundary behaviors of Bergman kernel functions on such domains.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.