小行星采矿:ACT&Friends对GTOC12问题的结果

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Dario Izzo, Marcus Märtens, Laurent Beauregard, Max Bannach, Giacomo Acciarini, Emmanuel Blazquez, Alexander Hadjiivanov, Jai Grover, Gernot Heißel, Yuri Shimane, Chit Hong Yam
{"title":"小行星采矿:ACT&Friends对GTOC12问题的结果","authors":"Dario Izzo,&nbsp;Marcus Märtens,&nbsp;Laurent Beauregard,&nbsp;Max Bannach,&nbsp;Giacomo Acciarini,&nbsp;Emmanuel Blazquez,&nbsp;Alexander Hadjiivanov,&nbsp;Jai Grover,&nbsp;Gernot Heißel,&nbsp;Yuri Shimane,&nbsp;Chit Hong Yam","doi":"10.1007/s42064-024-0204-x","DOIUrl":null,"url":null,"abstract":"<div><p>In 2023, the 12th edition of Global Trajectory Competition was organized around the problem referred to as “Sustainable Asteroid Mining”. This paper reports the developments that led to the solution proposed by ESA’s Advanced Concepts Team. Beyond the fact that the proposed approach failed to rank higher than fourth in the final competition leader-board, several innovative fundamental methodologies were developed which have a broader application. In particular, new methods based on machine learning as well as on manipulating the fundamental laws of astrodynamics were developed and able to fill with remarkable accuracy the gap between full low-thrust trajectories and their representation as impulsive Lambert transfers. A novel technique was devised to formulate the challenge of optimal subset selection from a repository of pre-existing optimal mining trajectories as an integer linear programming problem. Finally, the fundamental problem of searching for single optimal mining trajectories (mining and collecting all resources), albeit ignoring the possibility of having intra-ship collaboration and thus sub-optimal in the case of the GTOC12 problem, was efficiently solved by means of a novel search based on a look-ahead score and thus making sure to select asteroids that had chances to be re-visited later on.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"9 1","pages":"19 - 40"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asteroid mining: ACT&Friends’ results for the GTOC12 problem\",\"authors\":\"Dario Izzo,&nbsp;Marcus Märtens,&nbsp;Laurent Beauregard,&nbsp;Max Bannach,&nbsp;Giacomo Acciarini,&nbsp;Emmanuel Blazquez,&nbsp;Alexander Hadjiivanov,&nbsp;Jai Grover,&nbsp;Gernot Heißel,&nbsp;Yuri Shimane,&nbsp;Chit Hong Yam\",\"doi\":\"10.1007/s42064-024-0204-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2023, the 12th edition of Global Trajectory Competition was organized around the problem referred to as “Sustainable Asteroid Mining”. This paper reports the developments that led to the solution proposed by ESA’s Advanced Concepts Team. Beyond the fact that the proposed approach failed to rank higher than fourth in the final competition leader-board, several innovative fundamental methodologies were developed which have a broader application. In particular, new methods based on machine learning as well as on manipulating the fundamental laws of astrodynamics were developed and able to fill with remarkable accuracy the gap between full low-thrust trajectories and their representation as impulsive Lambert transfers. A novel technique was devised to formulate the challenge of optimal subset selection from a repository of pre-existing optimal mining trajectories as an integer linear programming problem. Finally, the fundamental problem of searching for single optimal mining trajectories (mining and collecting all resources), albeit ignoring the possibility of having intra-ship collaboration and thus sub-optimal in the case of the GTOC12 problem, was efficiently solved by means of a novel search based on a look-ahead score and thus making sure to select asteroids that had chances to be re-visited later on.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":\"9 1\",\"pages\":\"19 - 40\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-024-0204-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0204-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

2023年,第12届全球轨道竞赛围绕“可持续小行星采矿”这一问题举办。本文报告了导致欧空局先进概念团队提出的解决方案的发展。除了提议的方法未能在最终的比赛排行榜上排名第四之外,还开发了一些具有更广泛应用价值的创新基本方法。特别是,基于机器学习和操纵天体动力学基本定律的新方法得到了发展,并能够以惊人的精度填补完整的低推力轨迹与其脉冲朗伯特转移之间的空白。设计了一种新技术,将从预先存在的最优采矿轨迹库中选择最优子集的挑战表述为整数线性规划问题。最后,搜索单个最优采矿轨迹的基本问题(采矿和收集所有资源),尽管在GTOC12问题中忽略了船内协作的可能性,因此是次优的,但通过基于前瞻性分数的新颖搜索有效地解决了这一问题,从而确保选择有机会再次访问的小行星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asteroid mining: ACT&Friends’ results for the GTOC12 problem

In 2023, the 12th edition of Global Trajectory Competition was organized around the problem referred to as “Sustainable Asteroid Mining”. This paper reports the developments that led to the solution proposed by ESA’s Advanced Concepts Team. Beyond the fact that the proposed approach failed to rank higher than fourth in the final competition leader-board, several innovative fundamental methodologies were developed which have a broader application. In particular, new methods based on machine learning as well as on manipulating the fundamental laws of astrodynamics were developed and able to fill with remarkable accuracy the gap between full low-thrust trajectories and their representation as impulsive Lambert transfers. A novel technique was devised to formulate the challenge of optimal subset selection from a repository of pre-existing optimal mining trajectories as an integer linear programming problem. Finally, the fundamental problem of searching for single optimal mining trajectories (mining and collecting all resources), albeit ignoring the possibility of having intra-ship collaboration and thus sub-optimal in the case of the GTOC12 problem, was efficiently solved by means of a novel search based on a look-ahead score and thus making sure to select asteroids that had chances to be re-visited later on.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信