GTOC12:南京航空航天大学的结果

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Yu Zhang, Jincheng Hu, Guoliang Liang, Hongwei Yang, Pengxuan Liu, Xinxi Zeng, Shuang Li, Bin Yang
{"title":"GTOC12:南京航空航天大学的结果","authors":"Yu Zhang,&nbsp;Jincheng Hu,&nbsp;Guoliang Liang,&nbsp;Hongwei Yang,&nbsp;Pengxuan Liu,&nbsp;Xinxi Zeng,&nbsp;Shuang Li,&nbsp;Bin Yang","doi":"10.1007/s42064-024-0209-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the results and design methods of team Nanjing University of Aeronautics and Astronautics in the 12th edition of the Global Trajectory Optimization Competition. To address the problem of sustainable asteroid mining, we focus on the following: analyzing the constraints and asteroids involved; selecting a candidate set of asteroids for which mining missions can be performed easily; establishing an algorithmic flow using phasing indicators, multiobjective beam search, and a genetic algorithm to determine the sequence of asteroid visits for mining ships; and optimizing low-thrust trajectories via an indirect method and global optimization. In addition, a central-node method is proposed to simplify the design process and reduce the computational cost of performing repetitive asteroid-rendezvous missions. The methods developed in the competition enable the mining of 161 asteroids via 20 mining ships, with a total collected mass of 11,513 kg.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"9 1","pages":"41 - 53"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GTOC12: Results from Nanjing University of Aeronautics and Astronautics\",\"authors\":\"Yu Zhang,&nbsp;Jincheng Hu,&nbsp;Guoliang Liang,&nbsp;Hongwei Yang,&nbsp;Pengxuan Liu,&nbsp;Xinxi Zeng,&nbsp;Shuang Li,&nbsp;Bin Yang\",\"doi\":\"10.1007/s42064-024-0209-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the results and design methods of team Nanjing University of Aeronautics and Astronautics in the 12th edition of the Global Trajectory Optimization Competition. To address the problem of sustainable asteroid mining, we focus on the following: analyzing the constraints and asteroids involved; selecting a candidate set of asteroids for which mining missions can be performed easily; establishing an algorithmic flow using phasing indicators, multiobjective beam search, and a genetic algorithm to determine the sequence of asteroid visits for mining ships; and optimizing low-thrust trajectories via an indirect method and global optimization. In addition, a central-node method is proposed to simplify the design process and reduce the computational cost of performing repetitive asteroid-rendezvous missions. The methods developed in the competition enable the mining of 161 asteroids via 20 mining ships, with a total collected mass of 11,513 kg.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":\"9 1\",\"pages\":\"41 - 53\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-024-0209-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0209-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了南京航空航天大学团队参加第12届全球轨道优化竞赛的结果和设计方法。为了解决可持续小行星采矿问题,我们重点分析了约束条件和涉及的小行星;选择一组易于执行采矿任务的候选小行星;建立了采用相位指示器、多目标波束搜索和遗传算法确定采矿船小行星访问顺序的算法流程;通过间接方法和全局优化对低推力轨迹进行优化。此外,提出了一种中心节点法,以简化设计过程,降低执行重复小行星交会任务的计算成本。竞赛中开发的方法可以通过20艘采矿船开采161颗小行星,总收集质量为11,513公斤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GTOC12: Results from Nanjing University of Aeronautics and Astronautics

This paper presents the results and design methods of team Nanjing University of Aeronautics and Astronautics in the 12th edition of the Global Trajectory Optimization Competition. To address the problem of sustainable asteroid mining, we focus on the following: analyzing the constraints and asteroids involved; selecting a candidate set of asteroids for which mining missions can be performed easily; establishing an algorithmic flow using phasing indicators, multiobjective beam search, and a genetic algorithm to determine the sequence of asteroid visits for mining ships; and optimizing low-thrust trajectories via an indirect method and global optimization. In addition, a central-node method is proposed to simplify the design process and reduce the computational cost of performing repetitive asteroid-rendezvous missions. The methods developed in the competition enable the mining of 161 asteroids via 20 mining ships, with a total collected mass of 11,513 kg.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信