铜绿假单胞菌脂氧合酶靶向抑制的计算见解:药物设计的提示

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Sahanawaz Parvez, Sonam Grewal, Anamika Kumari, Polamarasetty Aparoy
{"title":"铜绿假单胞菌脂氧合酶靶向抑制的计算见解:药物设计的提示","authors":"Sahanawaz Parvez,&nbsp;Sonam Grewal,&nbsp;Anamika Kumari,&nbsp;Polamarasetty Aparoy","doi":"10.1007/s00203-025-04257-8","DOIUrl":null,"url":null,"abstract":"<div><p><i>Pseudomonas aeruginosa</i> is regarded as the most opportunistic pathogen. It can induce ferroptosis in humans. It secretes a unique lipoxygenase (LOX) isoform, pLoxA that can oxidize polyenoic fatty acids. Unlike other lipoxygenases, pLoxA can oxygenate membrane phospholipids like phosphatidylethanolamine, leading to hemolysis of red blood cells (RBC). This functional overlap with human 15-LOX that uses the same substrate has provided a bottleneck to the discovery of pLoxA-specific inhibitors and there is an immediate need to find pLoxA specific drugs. The active site of pLoxA is much larger than LOX enzymes, reflecting its ability to accommodate bulky substrates, such as phospholipids. The molecular docking of two experimentally established inhibitors and the further molecular dynamics simulations provided possible key residues in the active site of pLoxA. Our study found that this region is essentially hydrophobic including His 377 and His 382 that are placed to the non-heme iron atom and help to stabilize the inhibitors in the binding site along with hydrophobic residues contribute well toward ligand interactions that involve Phe 415, Ile 416 and Leu 424. MD simulations showed that interactions with those residues were dynamic in nature. Main contribution to binding stability arose via π-π stacking, π-cation, and alkyl interactions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational insights into the targeted inhibition of lipoxygenase in Pseudomonas aeruginosa: hints for drug design\",\"authors\":\"Sahanawaz Parvez,&nbsp;Sonam Grewal,&nbsp;Anamika Kumari,&nbsp;Polamarasetty Aparoy\",\"doi\":\"10.1007/s00203-025-04257-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Pseudomonas aeruginosa</i> is regarded as the most opportunistic pathogen. It can induce ferroptosis in humans. It secretes a unique lipoxygenase (LOX) isoform, pLoxA that can oxidize polyenoic fatty acids. Unlike other lipoxygenases, pLoxA can oxygenate membrane phospholipids like phosphatidylethanolamine, leading to hemolysis of red blood cells (RBC). This functional overlap with human 15-LOX that uses the same substrate has provided a bottleneck to the discovery of pLoxA-specific inhibitors and there is an immediate need to find pLoxA specific drugs. The active site of pLoxA is much larger than LOX enzymes, reflecting its ability to accommodate bulky substrates, such as phospholipids. The molecular docking of two experimentally established inhibitors and the further molecular dynamics simulations provided possible key residues in the active site of pLoxA. Our study found that this region is essentially hydrophobic including His 377 and His 382 that are placed to the non-heme iron atom and help to stabilize the inhibitors in the binding site along with hydrophobic residues contribute well toward ligand interactions that involve Phe 415, Ile 416 and Leu 424. MD simulations showed that interactions with those residues were dynamic in nature. Main contribution to binding stability arose via π-π stacking, π-cation, and alkyl interactions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":\"207 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-025-04257-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04257-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铜绿假单胞菌被认为是最具机会性的病原体。它能诱导人类铁下垂。它分泌一种独特的脂氧合酶(LOX)异构体pLoxA,可以氧化多烯脂肪酸。与其他脂加氧酶不同,pLoxA可以氧化膜磷脂,如磷脂酰乙醇胺,导致红细胞(RBC)溶血。这种与使用相同底物的人类15-LOX的功能重叠为发现pLoxA特异性抑制剂提供了瓶颈,因此迫切需要找到pLoxA特异性药物。pLoxA酶的活性位点比LOX酶大得多,这反映了它适应大体积底物(如磷脂)的能力。两种实验建立的抑制剂的分子对接和进一步的分子动力学模拟提供了pLoxA活性位点可能的关键残基。我们的研究发现这个区域本质上是疏水的,包括His 377和His 382,它们被放置在非血红素铁原子上,并有助于稳定结合位点的抑制剂,以及疏水残基对涉及Phe 415, Ile 416和Leu 424的配体相互作用有很好的贡献。MD模拟表明,与这些残留物的相互作用本质上是动态的。π-π堆积、π阳离子和烷基相互作用是影响结合稳定性的主要因素。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational insights into the targeted inhibition of lipoxygenase in Pseudomonas aeruginosa: hints for drug design

Pseudomonas aeruginosa is regarded as the most opportunistic pathogen. It can induce ferroptosis in humans. It secretes a unique lipoxygenase (LOX) isoform, pLoxA that can oxidize polyenoic fatty acids. Unlike other lipoxygenases, pLoxA can oxygenate membrane phospholipids like phosphatidylethanolamine, leading to hemolysis of red blood cells (RBC). This functional overlap with human 15-LOX that uses the same substrate has provided a bottleneck to the discovery of pLoxA-specific inhibitors and there is an immediate need to find pLoxA specific drugs. The active site of pLoxA is much larger than LOX enzymes, reflecting its ability to accommodate bulky substrates, such as phospholipids. The molecular docking of two experimentally established inhibitors and the further molecular dynamics simulations provided possible key residues in the active site of pLoxA. Our study found that this region is essentially hydrophobic including His 377 and His 382 that are placed to the non-heme iron atom and help to stabilize the inhibitors in the binding site along with hydrophobic residues contribute well toward ligand interactions that involve Phe 415, Ile 416 and Leu 424. MD simulations showed that interactions with those residues were dynamic in nature. Main contribution to binding stability arose via π-π stacking, π-cation, and alkyl interactions.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信