固态储氢用v - ti基固溶体合金

IF 26.6 1区 材料科学 Q1 Engineering
Shaoyang Shen, Yongan Li, Liuzhang Ouyang, Lan Zhang, Min Zhu, Zongwen Liu
{"title":"固态储氢用v - ti基固溶体合金","authors":"Shaoyang Shen,&nbsp;Yongan Li,&nbsp;Liuzhang Ouyang,&nbsp;Lan Zhang,&nbsp;Min Zhu,&nbsp;Zongwen Liu","doi":"10.1007/s40820-025-01672-w","DOIUrl":null,"url":null,"abstract":"<div><p>This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride (MH) tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures. V–Ti-based solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt% at ambient temperature. The preparation methods, structure characteristics, improvement methods of hydrogen storage performance, and attenuation mechanism are systematically summarized and discussed. The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically. For large-scale applications on MH tanks, it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity, good cyclic durability, and excellent activation performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01672-w.pdf","citationCount":"0","resultStr":"{\"title\":\"V–Ti-Based Solid Solution Alloys for Solid-State Hydrogen Storage\",\"authors\":\"Shaoyang Shen,&nbsp;Yongan Li,&nbsp;Liuzhang Ouyang,&nbsp;Lan Zhang,&nbsp;Min Zhu,&nbsp;Zongwen Liu\",\"doi\":\"10.1007/s40820-025-01672-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride (MH) tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures. V–Ti-based solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt% at ambient temperature. The preparation methods, structure characteristics, improvement methods of hydrogen storage performance, and attenuation mechanism are systematically summarized and discussed. The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically. For large-scale applications on MH tanks, it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity, good cyclic durability, and excellent activation performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01672-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01672-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01672-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了钒钛基储氢材料的研究进展。钒钛基储氢材料用于金属氢化物(MH)储罐,在相对环境的温度和压力下为燃料电池提供氢。v - ti基固溶体合金具有较高的可逆储氢容量,室温下储氢容量超过2 wt%,是众多金属氢化物中较好的储氢材料。对其制备方法、结构特点、储氢性能改善方法及衰减机理进行了系统总结和探讨。着重讨论了储氢性能与合金成分及相结构的关系。为了在MH储罐上大规模应用,需要开发具有高可逆储氢容量、良好循环耐久性和优异活化性能的低成本高性能v - ti基固溶体合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
V–Ti-Based Solid Solution Alloys for Solid-State Hydrogen Storage

This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride (MH) tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures. V–Ti-based solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt% at ambient temperature. The preparation methods, structure characteristics, improvement methods of hydrogen storage performance, and attenuation mechanism are systematically summarized and discussed. The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically. For large-scale applications on MH tanks, it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity, good cyclic durability, and excellent activation performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信