端基诱导超分子苝单亚胺纳米带的超快激子解离用于高效光催化析氢

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-03 DOI:10.1002/smll.202408140
Shuhong Wu, Xiuyan Cheng, Haowei Huang, Qin Yang, Ying Wang, Yan Zhuang, Wanqing Li, Yuan Liu, Huan Lin, Hui Niu, Junhui Wang, Kaifeng Wu, Xianzhi Fu, Jinlin Long
{"title":"端基诱导超分子苝单亚胺纳米带的超快激子解离用于高效光催化析氢","authors":"Shuhong Wu,&nbsp;Xiuyan Cheng,&nbsp;Haowei Huang,&nbsp;Qin Yang,&nbsp;Ying Wang,&nbsp;Yan Zhuang,&nbsp;Wanqing Li,&nbsp;Yuan Liu,&nbsp;Huan Lin,&nbsp;Hui Niu,&nbsp;Junhui Wang,&nbsp;Kaifeng Wu,&nbsp;Xianzhi Fu,&nbsp;Jinlin Long","doi":"10.1002/smll.202408140","DOIUrl":null,"url":null,"abstract":"<p>Achieving fast exciton dissociation is a critical factor for optimizing the performance of organic photocatalysts in solar energy conversion. This work demonstrates the end-group-dependent ultrafast exciton dissociation in supramolecular perylene monoimide (PMI) nanostructures. A series of PMI molecules are designed by connecting the amide site with methylene carboxyl (─CH<sub>2</sub>─COOH), methylene phosphonic acid (─CH<sub>2</sub>─PO<sub>3</sub>H<sub>2</sub>), and methylene sulfonic acid (─CH<sub>2</sub>─SO<sub>3</sub>H) to increase the dipole moment and built-in electric field, thereby effectively diminishing exciton binding energy. Upon photoexcitation, self-assembled PMI-CH<sub>2</sub>-SO<sub>3</sub>H nanoribbons (NRs), which exhibit the lowest exciton binding energy of 29.4 meV, achieve ultrafast exciton dissociation within 0.25 ps, leading to the formation of charge-separated excitons from charge-transfer states. This dissociation rate is ≈40 and 16 times faster than that observed in PMI-CH<sub>2</sub>-COOH (NRs) and PMI-CH<sub>2</sub>-PO<sub>3</sub>H<sub>2</sub> (NRs), respectively. Following the deposition of Pt nanoparticles on PMI NRs, Pt/PMI-CH<sub>2</sub>-SO<sub>3</sub>H (NRs) demonstrates an H<sub>2</sub> evolution of 21.2 mmol g<sup>−1</sup> h<sup>−1</sup> under visible light irradiation (λ &gt; 420 nm), outperforming Pt/PMI-CH<sub>2</sub>-COOH (NRs) and Pt/PMI-CH<sub>2</sub>-PO<sub>3</sub>H<sub>2</sub> (NRs) by factors of 53 and 5.4, respectively.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 14","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End Group-Induced Ultrafast Exciton Dissociation of Supramolecular Perylene Monoimide Nanoribbons for Efficient Photocatalytic Hydrogen Evolution\",\"authors\":\"Shuhong Wu,&nbsp;Xiuyan Cheng,&nbsp;Haowei Huang,&nbsp;Qin Yang,&nbsp;Ying Wang,&nbsp;Yan Zhuang,&nbsp;Wanqing Li,&nbsp;Yuan Liu,&nbsp;Huan Lin,&nbsp;Hui Niu,&nbsp;Junhui Wang,&nbsp;Kaifeng Wu,&nbsp;Xianzhi Fu,&nbsp;Jinlin Long\",\"doi\":\"10.1002/smll.202408140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Achieving fast exciton dissociation is a critical factor for optimizing the performance of organic photocatalysts in solar energy conversion. This work demonstrates the end-group-dependent ultrafast exciton dissociation in supramolecular perylene monoimide (PMI) nanostructures. A series of PMI molecules are designed by connecting the amide site with methylene carboxyl (─CH<sub>2</sub>─COOH), methylene phosphonic acid (─CH<sub>2</sub>─PO<sub>3</sub>H<sub>2</sub>), and methylene sulfonic acid (─CH<sub>2</sub>─SO<sub>3</sub>H) to increase the dipole moment and built-in electric field, thereby effectively diminishing exciton binding energy. Upon photoexcitation, self-assembled PMI-CH<sub>2</sub>-SO<sub>3</sub>H nanoribbons (NRs), which exhibit the lowest exciton binding energy of 29.4 meV, achieve ultrafast exciton dissociation within 0.25 ps, leading to the formation of charge-separated excitons from charge-transfer states. This dissociation rate is ≈40 and 16 times faster than that observed in PMI-CH<sub>2</sub>-COOH (NRs) and PMI-CH<sub>2</sub>-PO<sub>3</sub>H<sub>2</sub> (NRs), respectively. Following the deposition of Pt nanoparticles on PMI NRs, Pt/PMI-CH<sub>2</sub>-SO<sub>3</sub>H (NRs) demonstrates an H<sub>2</sub> evolution of 21.2 mmol g<sup>−1</sup> h<sup>−1</sup> under visible light irradiation (λ &gt; 420 nm), outperforming Pt/PMI-CH<sub>2</sub>-COOH (NRs) and Pt/PMI-CH<sub>2</sub>-PO<sub>3</sub>H<sub>2</sub> (NRs) by factors of 53 and 5.4, respectively.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 14\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202408140\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202408140","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实现快速激子解离是优化太阳能转化有机光催化剂性能的关键因素。这项工作证明了超分子苝单亚胺(PMI)纳米结构中端基依赖的超快激子解离。通过将酰胺位点与亚甲基羧基(─CH2─COOH)、亚甲基膦酸(─CH2─PO3H2)和亚甲基磺酸(─CH2─SO3H)连接,设计了一系列PMI分子,增加偶极矩和内置电场,从而有效降低激子结合能。在光激发下,自组装的pm - ch2 - so3h纳米带(NRs)在0.25 ps内实现了超快的激子解离,使激子从电荷转移态形成了电荷分离的激子。该解离速率分别比pm - ch2 - cooh (NRs)和pm - ch2 - po3h2 (NRs)快约40倍和16倍。Pt纳米颗粒沉积在PMI NRs上后,Pt/PMI- ch2 - so3h (NRs)在可见光照射下显示出21.2 mmol g−1 h−1的氢气析出(λ >;Pt/PMI-CH2-COOH (NRs)和Pt/PMI-CH2-PO3H2 (NRs)的性能分别为53倍和5.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

End Group-Induced Ultrafast Exciton Dissociation of Supramolecular Perylene Monoimide Nanoribbons for Efficient Photocatalytic Hydrogen Evolution

End Group-Induced Ultrafast Exciton Dissociation of Supramolecular Perylene Monoimide Nanoribbons for Efficient Photocatalytic Hydrogen Evolution

End Group-Induced Ultrafast Exciton Dissociation of Supramolecular Perylene Monoimide Nanoribbons for Efficient Photocatalytic Hydrogen Evolution

Achieving fast exciton dissociation is a critical factor for optimizing the performance of organic photocatalysts in solar energy conversion. This work demonstrates the end-group-dependent ultrafast exciton dissociation in supramolecular perylene monoimide (PMI) nanostructures. A series of PMI molecules are designed by connecting the amide site with methylene carboxyl (─CH2─COOH), methylene phosphonic acid (─CH2─PO3H2), and methylene sulfonic acid (─CH2─SO3H) to increase the dipole moment and built-in electric field, thereby effectively diminishing exciton binding energy. Upon photoexcitation, self-assembled PMI-CH2-SO3H nanoribbons (NRs), which exhibit the lowest exciton binding energy of 29.4 meV, achieve ultrafast exciton dissociation within 0.25 ps, leading to the formation of charge-separated excitons from charge-transfer states. This dissociation rate is ≈40 and 16 times faster than that observed in PMI-CH2-COOH (NRs) and PMI-CH2-PO3H2 (NRs), respectively. Following the deposition of Pt nanoparticles on PMI NRs, Pt/PMI-CH2-SO3H (NRs) demonstrates an H2 evolution of 21.2 mmol g−1 h−1 under visible light irradiation (λ > 420 nm), outperforming Pt/PMI-CH2-COOH (NRs) and Pt/PMI-CH2-PO3H2 (NRs) by factors of 53 and 5.4, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信