破解黑色素瘤的盔甲:超分子双重打击 XPO1 和 β-catenin,克服抗药性

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yinliang Lu, Ruishan Guo, Wenfei Song, Jing Wang, Hanmin Tang, Minghui Wei, Jing Zhao, Jinlu Ma, Tianya Liu, Wangxiao He, Suxia Han
{"title":"破解黑色素瘤的盔甲:超分子双重打击 XPO1 和 β-catenin,克服抗药性","authors":"Yinliang Lu, Ruishan Guo, Wenfei Song, Jing Wang, Hanmin Tang, Minghui Wei, Jing Zhao, Jinlu Ma, Tianya Liu, Wangxiao He, Suxia Han","doi":"10.1016/j.jare.2025.02.042","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>XPO1 plays a crucial role in the nuclear export machinery, making it an attractive target for inhibiting nuclear-cytoplasmic transport in melanoma, where its overexpression is linked to unfavorable prognosis. However, XPO1 monotherapy has not demonstrated sufficient efficacy to be considered a first-line treatment option for melanoma.<h3>Objectives</h3>This research aimed to delve into the resistance mechanism of XPO1-targeting therapy in melanoma and fabricate a proteinoid microsphere which could target XPO1 and β-catenin to maximize the effect of XPO1 inhibitors.<h3>Methods</h3>Transcriptome sequencing was used to analyze the effects of XPO1 interference on the signaling pathways of melanoma. Nuclear-cytoplasmic protein separation, co-immunoprecipitation, and confocal microscopic analyses were conducted to clarify the resistance mechanism of XPO1 targeting therapy. A proteinoid microsphere named XPinβ was developed by co-assembling a specially designed XPO1 antagonistic peptide (XPin) and a β-catenin antagonist (Carnosic acid/CA). Cell model, mouse allograft and patient-derived xenograft (PDX) models were used to evaluate the antitumor effect of XPinβ.<h3>Results</h3>In our study, inhibition of XPO1 led to the nuclear accumulation of β-catenin, altered the nuclear-cytoplasmic localization of APC, and activated the Wnt/β-catenin signaling pathway. XPinβ was efficiently internalized into melanoma cells via macropinocytosis, achieving simultaneous inhibition of both XPO1 and β-catenin. As expected, XPinβ demonstrated robust anti-tumor efficacy in an <u>allograft</u> melanoma mouse model, with significantly superior therapeutic effects compared to monotherapy targeting XPO1 or CA treatment alone. Moreover, XPinβ effectively inhibited growth of patient-derived xenograft (PDX) tumors overexpressing XPO1, outperforming both CA and the commercially available XPO1 inhibitor KPT-330. Most importantly, XPinβ significantly suppressed pulmonary metastasis of melanoma while maintaining excellent biosafety.<h3>Conclusions</h3>This study demonstrates the enhanced efficacy of XPO1-targeted therapy through the inhibition of the Wnt/β-catenin signaling pathway and introduces XPinβ, a proteinoid microsphere with promising clinical translational potential for dual targeting therapy against melanoma involving both XPO1 and β-catenin.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"29 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cracking melanoma’s armor: Supramolecular dual-strike on XPO1 and β-catenin to overcome resistance\",\"authors\":\"Yinliang Lu, Ruishan Guo, Wenfei Song, Jing Wang, Hanmin Tang, Minghui Wei, Jing Zhao, Jinlu Ma, Tianya Liu, Wangxiao He, Suxia Han\",\"doi\":\"10.1016/j.jare.2025.02.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Introduction</h3>XPO1 plays a crucial role in the nuclear export machinery, making it an attractive target for inhibiting nuclear-cytoplasmic transport in melanoma, where its overexpression is linked to unfavorable prognosis. However, XPO1 monotherapy has not demonstrated sufficient efficacy to be considered a first-line treatment option for melanoma.<h3>Objectives</h3>This research aimed to delve into the resistance mechanism of XPO1-targeting therapy in melanoma and fabricate a proteinoid microsphere which could target XPO1 and β-catenin to maximize the effect of XPO1 inhibitors.<h3>Methods</h3>Transcriptome sequencing was used to analyze the effects of XPO1 interference on the signaling pathways of melanoma. Nuclear-cytoplasmic protein separation, co-immunoprecipitation, and confocal microscopic analyses were conducted to clarify the resistance mechanism of XPO1 targeting therapy. A proteinoid microsphere named XPinβ was developed by co-assembling a specially designed XPO1 antagonistic peptide (XPin) and a β-catenin antagonist (Carnosic acid/CA). Cell model, mouse allograft and patient-derived xenograft (PDX) models were used to evaluate the antitumor effect of XPinβ.<h3>Results</h3>In our study, inhibition of XPO1 led to the nuclear accumulation of β-catenin, altered the nuclear-cytoplasmic localization of APC, and activated the Wnt/β-catenin signaling pathway. XPinβ was efficiently internalized into melanoma cells via macropinocytosis, achieving simultaneous inhibition of both XPO1 and β-catenin. As expected, XPinβ demonstrated robust anti-tumor efficacy in an <u>allograft</u> melanoma mouse model, with significantly superior therapeutic effects compared to monotherapy targeting XPO1 or CA treatment alone. Moreover, XPinβ effectively inhibited growth of patient-derived xenograft (PDX) tumors overexpressing XPO1, outperforming both CA and the commercially available XPO1 inhibitor KPT-330. Most importantly, XPinβ significantly suppressed pulmonary metastasis of melanoma while maintaining excellent biosafety.<h3>Conclusions</h3>This study demonstrates the enhanced efficacy of XPO1-targeted therapy through the inhibition of the Wnt/β-catenin signaling pathway and introduces XPinβ, a proteinoid microsphere with promising clinical translational potential for dual targeting therapy against melanoma involving both XPO1 and β-catenin.\",\"PeriodicalId\":14952,\"journal\":{\"name\":\"Journal of Advanced Research\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2025.02.042\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.02.042","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cracking melanoma’s armor: Supramolecular dual-strike on XPO1 and β-catenin to overcome resistance

Cracking melanoma’s armor: Supramolecular dual-strike on XPO1 and β-catenin to overcome resistance

Introduction

XPO1 plays a crucial role in the nuclear export machinery, making it an attractive target for inhibiting nuclear-cytoplasmic transport in melanoma, where its overexpression is linked to unfavorable prognosis. However, XPO1 monotherapy has not demonstrated sufficient efficacy to be considered a first-line treatment option for melanoma.

Objectives

This research aimed to delve into the resistance mechanism of XPO1-targeting therapy in melanoma and fabricate a proteinoid microsphere which could target XPO1 and β-catenin to maximize the effect of XPO1 inhibitors.

Methods

Transcriptome sequencing was used to analyze the effects of XPO1 interference on the signaling pathways of melanoma. Nuclear-cytoplasmic protein separation, co-immunoprecipitation, and confocal microscopic analyses were conducted to clarify the resistance mechanism of XPO1 targeting therapy. A proteinoid microsphere named XPinβ was developed by co-assembling a specially designed XPO1 antagonistic peptide (XPin) and a β-catenin antagonist (Carnosic acid/CA). Cell model, mouse allograft and patient-derived xenograft (PDX) models were used to evaluate the antitumor effect of XPinβ.

Results

In our study, inhibition of XPO1 led to the nuclear accumulation of β-catenin, altered the nuclear-cytoplasmic localization of APC, and activated the Wnt/β-catenin signaling pathway. XPinβ was efficiently internalized into melanoma cells via macropinocytosis, achieving simultaneous inhibition of both XPO1 and β-catenin. As expected, XPinβ demonstrated robust anti-tumor efficacy in an allograft melanoma mouse model, with significantly superior therapeutic effects compared to monotherapy targeting XPO1 or CA treatment alone. Moreover, XPinβ effectively inhibited growth of patient-derived xenograft (PDX) tumors overexpressing XPO1, outperforming both CA and the commercially available XPO1 inhibitor KPT-330. Most importantly, XPinβ significantly suppressed pulmonary metastasis of melanoma while maintaining excellent biosafety.

Conclusions

This study demonstrates the enhanced efficacy of XPO1-targeted therapy through the inhibition of the Wnt/β-catenin signaling pathway and introduces XPinβ, a proteinoid microsphere with promising clinical translational potential for dual targeting therapy against melanoma involving both XPO1 and β-catenin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信