Wookjin Jung, Dongkyu Lee, Hohyeon Kim, Boyoung Son, Seungjun Oh, Jeong Eun Gong, Daehong Kim, Jungwon Yoon, Jihyeon Yeom
{"title":"Universal Chiral Nanopaint for Metal Oxide Biomaterials","authors":"Wookjin Jung, Dongkyu Lee, Hohyeon Kim, Boyoung Son, Seungjun Oh, Jeong Eun Gong, Daehong Kim, Jungwon Yoon, Jihyeon Yeom","doi":"10.1021/acsnano.4c14460","DOIUrl":null,"url":null,"abstract":"Chirality is widespread in nature and governs the properties of various materials including inorganic nanomaterials. However, previously reported chiral inorganic materials have been limited to a handful of compositions owing to the physicochemical restrictions that impart chirality. Herein, chiral nanopaint applicable to diverse inorganic materials is presented. Various metal oxide nanoparticles (NPs) show chiroptical properties after coating with our chiral nanopaint, while maintaining their properties, such as magnetic properties. The combination of magnetism and chirality brings biomedical functionalities to chiral NPs, such as anticancer hyperthermia treatment. In vitro, <span>d</span>-nanopainted iron oxide NPs showed more than 50% higher cellular uptake compared to <span>l</span>-nanopainted iron oxide NPs, and this was due to the enantiospecific interaction between the cellular receptors on the cell surface and the chiral NPs. In vivo, <span>d</span>-nanopainted iron oxide NPs showed 4-fold superior anticancer efficiency by magnetic hyperthermia compared to <span>l</span>-nanopainted iron oxide NPs owing to improved adsorption to tumors. These chiral nanoparticles may provide potential synthesis strategies for chiral inorganic biomaterials, which exhibit elaborate combinations of intrinsic physical properties and extrinsic enantioselective properties for a variety of applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"85 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14460","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Universal Chiral Nanopaint for Metal Oxide Biomaterials
Chirality is widespread in nature and governs the properties of various materials including inorganic nanomaterials. However, previously reported chiral inorganic materials have been limited to a handful of compositions owing to the physicochemical restrictions that impart chirality. Herein, chiral nanopaint applicable to diverse inorganic materials is presented. Various metal oxide nanoparticles (NPs) show chiroptical properties after coating with our chiral nanopaint, while maintaining their properties, such as magnetic properties. The combination of magnetism and chirality brings biomedical functionalities to chiral NPs, such as anticancer hyperthermia treatment. In vitro, d-nanopainted iron oxide NPs showed more than 50% higher cellular uptake compared to l-nanopainted iron oxide NPs, and this was due to the enantiospecific interaction between the cellular receptors on the cell surface and the chiral NPs. In vivo, d-nanopainted iron oxide NPs showed 4-fold superior anticancer efficiency by magnetic hyperthermia compared to l-nanopainted iron oxide NPs owing to improved adsorption to tumors. These chiral nanoparticles may provide potential synthesis strategies for chiral inorganic biomaterials, which exhibit elaborate combinations of intrinsic physical properties and extrinsic enantioselective properties for a variety of applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.