超分子纳米工程按需产生纳米机械力,实现抗 miRNA 的精确细胞输送和 TNBC 协同治疗

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuxin Yang, Haijun Ning, Hao Zhu, Jianjun Du, Wen Sun, Kedong Song, Yuen Yee Cheng, Jiangli Fan, Xiaojun Peng
{"title":"超分子纳米工程按需产生纳米机械力,实现抗 miRNA 的精确细胞输送和 TNBC 协同治疗","authors":"Yuxin Yang,&nbsp;Haijun Ning,&nbsp;Hao Zhu,&nbsp;Jianjun Du,&nbsp;Wen Sun,&nbsp;Kedong Song,&nbsp;Yuen Yee Cheng,&nbsp;Jiangli Fan,&nbsp;Xiaojun Peng","doi":"10.1002/adma.202419651","DOIUrl":null,"url":null,"abstract":"<p>Although anti-microRNA (miRNA) is capable of silencing target miRNA and regulating multiple mRNAs in diverse signaling pathways, RNA medicines still encounter numerous challenges, especially in terms of poor delivery, inefficient endo/lysosomal escape, and suboptimal treatment. Herein, we have developed a carrier-free supramolecular nanoengine, AMGA (anti-miRNA/GEM<sub>2</sub>-Azo), which significantly enhances the cytosolic delivery of anti-miRNA without requiring light irradiation, thereby facilitating precise targeting and synergistic chemo-gene therapy for triple-negative breast cancer (TNBC). AMGA can be rapidly internalized by cancer cells and specifically generate nanomechanical force to promote the efficient escape of anti-miRNAs from the endo/lysosome to the cytoplasm, simultaneously downregulating miR-21 and miR-10b. In comparison to Lipofectamine 2000, AMGA demonstrated superior efficacy in inhibiting the proliferation, migration, and invasion of cancer cells. Significantly, AMGA exhibited profound antitumor and gene silencing effects in an orthotopic human TNBC mouse model. This novel supramolecular nanoengine presents a promising strategy for cytosolic delivery of anti-miRNAs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 14","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Supramolecular Nanoengine Generates Nanomechanical Force on Demand for Precise Cytosolic Delivery of Anti-miRNAs and Synergistic TNBC Therapy\",\"authors\":\"Yuxin Yang,&nbsp;Haijun Ning,&nbsp;Hao Zhu,&nbsp;Jianjun Du,&nbsp;Wen Sun,&nbsp;Kedong Song,&nbsp;Yuen Yee Cheng,&nbsp;Jiangli Fan,&nbsp;Xiaojun Peng\",\"doi\":\"10.1002/adma.202419651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although anti-microRNA (miRNA) is capable of silencing target miRNA and regulating multiple mRNAs in diverse signaling pathways, RNA medicines still encounter numerous challenges, especially in terms of poor delivery, inefficient endo/lysosomal escape, and suboptimal treatment. Herein, we have developed a carrier-free supramolecular nanoengine, AMGA (anti-miRNA/GEM<sub>2</sub>-Azo), which significantly enhances the cytosolic delivery of anti-miRNA without requiring light irradiation, thereby facilitating precise targeting and synergistic chemo-gene therapy for triple-negative breast cancer (TNBC). AMGA can be rapidly internalized by cancer cells and specifically generate nanomechanical force to promote the efficient escape of anti-miRNAs from the endo/lysosome to the cytoplasm, simultaneously downregulating miR-21 and miR-10b. In comparison to Lipofectamine 2000, AMGA demonstrated superior efficacy in inhibiting the proliferation, migration, and invasion of cancer cells. Significantly, AMGA exhibited profound antitumor and gene silencing effects in an orthotopic human TNBC mouse model. This novel supramolecular nanoengine presents a promising strategy for cytosolic delivery of anti-miRNAs.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 14\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202419651\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202419651","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管抗microrna (miRNA)能够沉默靶miRNA并调节多种信号通路中的多种mrna,但RNA药物仍然面临许多挑战,特别是在递送不良、内切酶体/溶酶体逃避效率低下以及治疗效果不佳等方面。在此,我们开发了一种无载体的超分子纳米引擎AMGA (anti-miRNA/GEM2-Azo),它在不需要光照射的情况下显著增强了抗mirna的细胞质递送,从而促进了三阴性乳腺癌(TNBC)的精确靶向和协同化学基因治疗。AMGA可被癌细胞快速内化,特异性产生纳米机械力,促进anti- mirna从内切/溶酶体高效逃逸至细胞质,同时下调miR-21和miR-10b。与Lipofectamine 2000相比,AMGA在抑制癌细胞增殖、迁移和侵袭方面表现出更好的效果。值得注意的是,AMGA在人类原位TNBC小鼠模型中表现出深刻的抗肿瘤和基因沉默作用。这种新型的超分子纳米引擎为细胞质内递送抗mirna提供了一种很有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Supramolecular Nanoengine Generates Nanomechanical Force on Demand for Precise Cytosolic Delivery of Anti-miRNAs and Synergistic TNBC Therapy

A Supramolecular Nanoengine Generates Nanomechanical Force on Demand for Precise Cytosolic Delivery of Anti-miRNAs and Synergistic TNBC Therapy

A Supramolecular Nanoengine Generates Nanomechanical Force on Demand for Precise Cytosolic Delivery of Anti-miRNAs and Synergistic TNBC Therapy

A Supramolecular Nanoengine Generates Nanomechanical Force on Demand for Precise Cytosolic Delivery of Anti-miRNAs and Synergistic TNBC Therapy

A Supramolecular Nanoengine Generates Nanomechanical Force on Demand for Precise Cytosolic Delivery of Anti-miRNAs and Synergistic TNBC Therapy

A Supramolecular Nanoengine Generates Nanomechanical Force on Demand for Precise Cytosolic Delivery of Anti-miRNAs and Synergistic TNBC Therapy

Although anti-microRNA (miRNA) is capable of silencing target miRNA and regulating multiple mRNAs in diverse signaling pathways, RNA medicines still encounter numerous challenges, especially in terms of poor delivery, inefficient endo/lysosomal escape, and suboptimal treatment. Herein, we have developed a carrier-free supramolecular nanoengine, AMGA (anti-miRNA/GEM2-Azo), which significantly enhances the cytosolic delivery of anti-miRNA without requiring light irradiation, thereby facilitating precise targeting and synergistic chemo-gene therapy for triple-negative breast cancer (TNBC). AMGA can be rapidly internalized by cancer cells and specifically generate nanomechanical force to promote the efficient escape of anti-miRNAs from the endo/lysosome to the cytoplasm, simultaneously downregulating miR-21 and miR-10b. In comparison to Lipofectamine 2000, AMGA demonstrated superior efficacy in inhibiting the proliferation, migration, and invasion of cancer cells. Significantly, AMGA exhibited profound antitumor and gene silencing effects in an orthotopic human TNBC mouse model. This novel supramolecular nanoengine presents a promising strategy for cytosolic delivery of anti-miRNAs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信