用于高级凝胶热电池的三元水凝胶电解质的开发:特殊的抗干燥,防冻和机械稳健性

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ji-Xiang Gui, Yan Cheng, Kai Ren, Ze-Peng Liu, Zibo Zhu, Zhi-Yong Xue, Yinbo Zhu, Rong-Hao Wang, Gang Pei, Jiehe Sui, Li-Feng Chen
{"title":"用于高级凝胶热电池的三元水凝胶电解质的开发:特殊的抗干燥,防冻和机械稳健性","authors":"Ji-Xiang Gui,&nbsp;Yan Cheng,&nbsp;Kai Ren,&nbsp;Ze-Peng Liu,&nbsp;Zibo Zhu,&nbsp;Zhi-Yong Xue,&nbsp;Yinbo Zhu,&nbsp;Rong-Hao Wang,&nbsp;Gang Pei,&nbsp;Jiehe Sui,&nbsp;Li-Feng Chen","doi":"10.1002/adma.202420214","DOIUrl":null,"url":null,"abstract":"<p>Gel thermocells (GTCs) provide a safe, facile, and scalable solution for harvesting waste heat to power ubiquitous electronics. However, achieving a harmonious integration of high power density, wide-temperature-range stability, and mechanical robustness in GTCs remains a significant challenge. In this work, a novel ternary gel thermocell (TGTC) is proposed and fabricated by integrating ferro/ferricyanide (Fe(CN)<sub>6</sub><sup>3−/4−</sup>) redox couples, thermosensitive crystallizing agents guanidinium chloride (GdmCl), and supporting electrolytes lithium chloride (LiCl) into natural nanocellulose hydrogels to enhance overall performance. GdmCl selectively induces Fe(CN)<sub>6</sub><sup>4−</sup> crystallization, increasing the concentration difference of redox pairs, resulting in improving thermopower and significantly increased fiber friction, while LiCl rapidly balances charges through electromigration promoting efficient ion transport and reconstructing hydrogen bond networks, contributing to an excellent output power density and the capture of water molecules, which are further elucidated by simulations, achieving synchronous enhancement of anti-drying, anti-freezing and mechanical properties. Consequently, the TGTC achieves a remarkable thermopower of 3.42 mV K<sup>−1</sup>, a maximum power density of 2.8 mW m<sup>−2</sup> K<sup>−2</sup>, multiple continuous stable cycles at −20 °C, and an impressive strength of 3.06 MPa. Notably, this study elucidates the design principles and underlying mechanisms of ternary gel electrolytes, offering a practical strategy for advancing GTC technology.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 14","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Ternary Hydrogel Electrolytes for Superior Gel Thermocells: Exceptional Anti-Drying, Anti-Freezing, and Mechanical Robustness\",\"authors\":\"Ji-Xiang Gui,&nbsp;Yan Cheng,&nbsp;Kai Ren,&nbsp;Ze-Peng Liu,&nbsp;Zibo Zhu,&nbsp;Zhi-Yong Xue,&nbsp;Yinbo Zhu,&nbsp;Rong-Hao Wang,&nbsp;Gang Pei,&nbsp;Jiehe Sui,&nbsp;Li-Feng Chen\",\"doi\":\"10.1002/adma.202420214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gel thermocells (GTCs) provide a safe, facile, and scalable solution for harvesting waste heat to power ubiquitous electronics. However, achieving a harmonious integration of high power density, wide-temperature-range stability, and mechanical robustness in GTCs remains a significant challenge. In this work, a novel ternary gel thermocell (TGTC) is proposed and fabricated by integrating ferro/ferricyanide (Fe(CN)<sub>6</sub><sup>3−/4−</sup>) redox couples, thermosensitive crystallizing agents guanidinium chloride (GdmCl), and supporting electrolytes lithium chloride (LiCl) into natural nanocellulose hydrogels to enhance overall performance. GdmCl selectively induces Fe(CN)<sub>6</sub><sup>4−</sup> crystallization, increasing the concentration difference of redox pairs, resulting in improving thermopower and significantly increased fiber friction, while LiCl rapidly balances charges through electromigration promoting efficient ion transport and reconstructing hydrogen bond networks, contributing to an excellent output power density and the capture of water molecules, which are further elucidated by simulations, achieving synchronous enhancement of anti-drying, anti-freezing and mechanical properties. Consequently, the TGTC achieves a remarkable thermopower of 3.42 mV K<sup>−1</sup>, a maximum power density of 2.8 mW m<sup>−2</sup> K<sup>−2</sup>, multiple continuous stable cycles at −20 °C, and an impressive strength of 3.06 MPa. Notably, this study elucidates the design principles and underlying mechanisms of ternary gel electrolytes, offering a practical strategy for advancing GTC technology.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 14\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202420214\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202420214","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

凝胶热电池(gtc)提供了一种安全、便捷、可扩展的解决方案,用于收集废热,为无处不在的电子产品供电。然而,在gtc中实现高功率密度、宽温度范围稳定性和机械鲁棒性的和谐集成仍然是一个重大挑战。在这项工作中,提出了一种新型的三元凝胶热电池(TGTC),并将铁/铁氰化物(Fe(CN)63−/4−)氧化还原偶联,热敏结晶剂氯化胍(GdmCl)和支撑电解质氯化锂(LiCl)集成到天然纳米纤维素水凝胶中,以提高整体性能。GdmCl选择性诱导Fe(CN)64−结晶,增加氧化还原对的浓度差,从而提高热功率并显著增加纤维摩擦,而LiCl通过电迁移快速平衡电荷,促进有效的离子传输和重建氢键网络,有助于优异的输出功率密度和水分子的捕获,这一点通过模拟得到了进一步的阐明。实现防干、防冻、机械性能同步增强。因此,TGTC的热功率为3.42 mV K−1,最大功率密度为2.8 mW m−2 K−2,在- 20°C下多次连续稳定循环,强度为3.06 MPa。值得注意的是,本研究阐明了三元凝胶电解质的设计原理和潜在机制,为推进GTC技术提供了实用的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of Ternary Hydrogel Electrolytes for Superior Gel Thermocells: Exceptional Anti-Drying, Anti-Freezing, and Mechanical Robustness

Development of Ternary Hydrogel Electrolytes for Superior Gel Thermocells: Exceptional Anti-Drying, Anti-Freezing, and Mechanical Robustness

Development of Ternary Hydrogel Electrolytes for Superior Gel Thermocells: Exceptional Anti-Drying, Anti-Freezing, and Mechanical Robustness

Gel thermocells (GTCs) provide a safe, facile, and scalable solution for harvesting waste heat to power ubiquitous electronics. However, achieving a harmonious integration of high power density, wide-temperature-range stability, and mechanical robustness in GTCs remains a significant challenge. In this work, a novel ternary gel thermocell (TGTC) is proposed and fabricated by integrating ferro/ferricyanide (Fe(CN)63−/4−) redox couples, thermosensitive crystallizing agents guanidinium chloride (GdmCl), and supporting electrolytes lithium chloride (LiCl) into natural nanocellulose hydrogels to enhance overall performance. GdmCl selectively induces Fe(CN)64− crystallization, increasing the concentration difference of redox pairs, resulting in improving thermopower and significantly increased fiber friction, while LiCl rapidly balances charges through electromigration promoting efficient ion transport and reconstructing hydrogen bond networks, contributing to an excellent output power density and the capture of water molecules, which are further elucidated by simulations, achieving synchronous enhancement of anti-drying, anti-freezing and mechanical properties. Consequently, the TGTC achieves a remarkable thermopower of 3.42 mV K−1, a maximum power density of 2.8 mW m−2 K−2, multiple continuous stable cycles at −20 °C, and an impressive strength of 3.06 MPa. Notably, this study elucidates the design principles and underlying mechanisms of ternary gel electrolytes, offering a practical strategy for advancing GTC technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信