乳酸发酵可改善鹰嘴豆粉的营养和功能特性。

M F Chiacchio, S Tagliamonte, A Pazzanese, P Vitaglione, G Blaiotta
{"title":"乳酸发酵可改善鹰嘴豆粉的营养和功能特性。","authors":"M F Chiacchio, S Tagliamonte, A Pazzanese, P Vitaglione, G Blaiotta","doi":"10.1016/j.foodres.2025.115899","DOIUrl":null,"url":null,"abstract":"<p><p>Consumption of healthy diets with low environmental impact is crucial for improving global health. Legumes, like chickpeas, serve as valuable meat alternatives due to their nutritional profile, which may be improved through fermentation. This study aimed to develop innovative fermented chickpea flours using lactic acid bacteria (LAB) strains from diverse ecosystems and evaluate their nutritional and functional properties in vitro. Fourteen batches of 20% chickpea-based puree were produced and fermented with 14 LAB isolated from different ecosystems. After fermentation, flours were obtained by freeze-drying. Most LAB grew well and reduced the pH of chickpea purees below 5 within 48 h. The flours were characterized for the content of polyphenols, bioactive peptides (BAPs), free amino groups (FAG), and phytic acid along with the total antioxidant capacity (TAC). Results showed that flours fermented by four LAB strains, including Enterococcus hirae and Enterococcus faecium had higher FAG and BAPs, including inhibitors of Dipeptidyl peptidase-IV and Angiotensin-converting enzyme. Flours fermented by Leuconostoc mesenteroides OM94, Lactiplantibacillus plantarum 299v, Lactiplantibacillus plantarum E75, Lactiplantibacillus plantarum LPPB, and Lacticaseibacillus casei LBC491 contained higher amounts of polyphenols, had soluble TAC that was 10-fold and direct TAC 3-fold higher, and lower phytic acid content than the control flour. Pyrogallol was detected in fermented products for the first time, and protocatechuic 4-O-glucoside increased three times in chickpea flours fermented by Leuconostoc mesenteroides OM94 compared to the control. In conclusion, fermentation improved the nutritional and functional qualities of chickpea flour, identifying promising LAB strains to enhance antioxidant capacity and polyphenols availability.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"203 ","pages":"115899"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactic acid fermentation improves nutritional and functional properties of chickpea flours.\",\"authors\":\"M F Chiacchio, S Tagliamonte, A Pazzanese, P Vitaglione, G Blaiotta\",\"doi\":\"10.1016/j.foodres.2025.115899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Consumption of healthy diets with low environmental impact is crucial for improving global health. Legumes, like chickpeas, serve as valuable meat alternatives due to their nutritional profile, which may be improved through fermentation. This study aimed to develop innovative fermented chickpea flours using lactic acid bacteria (LAB) strains from diverse ecosystems and evaluate their nutritional and functional properties in vitro. Fourteen batches of 20% chickpea-based puree were produced and fermented with 14 LAB isolated from different ecosystems. After fermentation, flours were obtained by freeze-drying. Most LAB grew well and reduced the pH of chickpea purees below 5 within 48 h. The flours were characterized for the content of polyphenols, bioactive peptides (BAPs), free amino groups (FAG), and phytic acid along with the total antioxidant capacity (TAC). Results showed that flours fermented by four LAB strains, including Enterococcus hirae and Enterococcus faecium had higher FAG and BAPs, including inhibitors of Dipeptidyl peptidase-IV and Angiotensin-converting enzyme. Flours fermented by Leuconostoc mesenteroides OM94, Lactiplantibacillus plantarum 299v, Lactiplantibacillus plantarum E75, Lactiplantibacillus plantarum LPPB, and Lacticaseibacillus casei LBC491 contained higher amounts of polyphenols, had soluble TAC that was 10-fold and direct TAC 3-fold higher, and lower phytic acid content than the control flour. Pyrogallol was detected in fermented products for the first time, and protocatechuic 4-O-glucoside increased three times in chickpea flours fermented by Leuconostoc mesenteroides OM94 compared to the control. In conclusion, fermentation improved the nutritional and functional qualities of chickpea flour, identifying promising LAB strains to enhance antioxidant capacity and polyphenols availability.</p>\",\"PeriodicalId\":94010,\"journal\":{\"name\":\"Food research international (Ottawa, Ont.)\",\"volume\":\"203 \",\"pages\":\"115899\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food research international (Ottawa, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodres.2025.115899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2025.115899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

食用对环境影响小的健康饮食对改善全球健康至关重要。豆类,如鹰嘴豆,作为有价值的肉类替代品,因为它们的营养成分,可以通过发酵来改善。本研究旨在利用来自不同生态系统的乳酸菌(LAB)菌株开发新型鹰嘴豆发酵粉,并对其体外营养和功能特性进行评价。采用从不同生态系统中分离的14株乳酸菌进行发酵,生产了14批含20%鹰嘴豆的果泥。发酵后,冷冻干燥得到面粉。大多数乳酸菌生长良好,并在48 h内将鹰嘴豆泥的pH值降至5以下。所制备的鹰嘴豆泥的多酚、生物活性肽(BAPs)、游离氨基(FAG)和植酸含量以及总抗氧化能力(TAC)均得到表征。结果表明,4株乳酸菌发酵的面粉具有较高的FAG和BAPs(含二肽基肽酶- iv和血管紧张素转换酶抑制剂)。经肠系膜芽孢杆菌OM94、植物乳杆菌299v、植物乳杆菌E75、植物乳杆菌LPPB和干酪乳杆菌LBC491发酵的面粉多酚含量较高,可溶性TAC高10倍,直接TAC高3倍,植酸含量较对照面粉低。经mesenteroides Leuconostoc OM94发酵的鹰嘴豆粉中首次检出邻苯三酚,原儿茶4- o -葡萄糖苷含量较对照增加3倍。综上所述,发酵改善了鹰嘴豆粉的营养和功能品质,确定了有希望提高鹰嘴豆粉抗氧化能力和多酚利用率的菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lactic acid fermentation improves nutritional and functional properties of chickpea flours.

Consumption of healthy diets with low environmental impact is crucial for improving global health. Legumes, like chickpeas, serve as valuable meat alternatives due to their nutritional profile, which may be improved through fermentation. This study aimed to develop innovative fermented chickpea flours using lactic acid bacteria (LAB) strains from diverse ecosystems and evaluate their nutritional and functional properties in vitro. Fourteen batches of 20% chickpea-based puree were produced and fermented with 14 LAB isolated from different ecosystems. After fermentation, flours were obtained by freeze-drying. Most LAB grew well and reduced the pH of chickpea purees below 5 within 48 h. The flours were characterized for the content of polyphenols, bioactive peptides (BAPs), free amino groups (FAG), and phytic acid along with the total antioxidant capacity (TAC). Results showed that flours fermented by four LAB strains, including Enterococcus hirae and Enterococcus faecium had higher FAG and BAPs, including inhibitors of Dipeptidyl peptidase-IV and Angiotensin-converting enzyme. Flours fermented by Leuconostoc mesenteroides OM94, Lactiplantibacillus plantarum 299v, Lactiplantibacillus plantarum E75, Lactiplantibacillus plantarum LPPB, and Lacticaseibacillus casei LBC491 contained higher amounts of polyphenols, had soluble TAC that was 10-fold and direct TAC 3-fold higher, and lower phytic acid content than the control flour. Pyrogallol was detected in fermented products for the first time, and protocatechuic 4-O-glucoside increased three times in chickpea flours fermented by Leuconostoc mesenteroides OM94 compared to the control. In conclusion, fermentation improved the nutritional and functional qualities of chickpea flour, identifying promising LAB strains to enhance antioxidant capacity and polyphenols availability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信