Nicolas A. Alderete , Jin W. Hwang , Meisam Asgari , Ryan Benavides , Sourav Halder , Leyu Sun , Dustin Carlson , Eric Goudie , Domenico A. Farina , Sam Kim , Daniel P. Pearce , Colleen M. Witzenburg , Neelesh A. Patankar , Guan-Yu Yang , John E. Pandolfino , Sevketcan Sarikaya , Horacio D. Espinosa
{"title":"新鲜病变人食道的离体力学结构特征。","authors":"Nicolas A. Alderete , Jin W. Hwang , Meisam Asgari , Ryan Benavides , Sourav Halder , Leyu Sun , Dustin Carlson , Eric Goudie , Domenico A. Farina , Sam Kim , Daniel P. Pearce , Colleen M. Witzenburg , Neelesh A. Patankar , Guan-Yu Yang , John E. Pandolfino , Sevketcan Sarikaya , Horacio D. Espinosa","doi":"10.1016/j.actbio.2025.02.051","DOIUrl":null,"url":null,"abstract":"<div><div>The esophagus, the tube-like organ responsible for transporting food from the pharynx to the stomach, operates as a highly mechanical structure, exhibiting complex contraction and distension patterns triggered by neurological impulses. Despite the critical role of mechanics in its function and the need for high-fidelity models of esophageal transport, mechanical characterization studies of human esophagus remain relatively scarce. In addition to the paucity of studies in human specimens, the available results are often scattered in terms of methodology and scope, making it difficult to compare findings across studies and thereby limiting their use in computational models. In this work, we present a detailed passive-mechanical and structural characterization of the esophageal muscular layers, excised from short esophageal segments obtained from live patients with varied clinical presentations. Specifically, we conducted uniaxial and planar biaxial extension tests on the smooth muscle layers, complemented by pre- and post-testing structural characterization via histological imaging. Unlike existing studies, our experimental results on passive behavior are discussed in the context of physiological relevance (e.g., physiological stretches, and activity-inhibiting pathologies), providing valuable insights that guide the subsequent modeling of the esophagus’ mechanical response. As such, this work provides new insights into the passive properties of the fresh human esophagus, expands the existing database of mechanical parameters for computational modeling, and lays the foundation for future studies on active mechanical properties.</div></div><div><h3>Statement of significance</h3><div>Understanding the mechanical properties of the esophagus is crucial for developing accurate models of its function and suitable replacements. This study provides insights into the passive mechanical behavior of fresh human esophageal tissue, enhancing our understanding of how it responds to stretching under physiological conditions. By characterizing the properties of different esophageal layers, obtained from esophagectomy specimens with various presentations, and considering their relevance to both normal and abnormal functioning, this work addresses the gap in ex-vivo human esophagus studies. The findings emphasize the importance of contextually analyzing experimental results within physiological parameters and suggest avenues for future research to further refine our understanding of esophageal mechanics, paving the way for improved diagnostic and therapeutic approaches in managing esophageal disorders.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"196 ","pages":"Pages 257-270"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ex-vivo mechano-structural characterization of fresh diseased human esophagus\",\"authors\":\"Nicolas A. Alderete , Jin W. Hwang , Meisam Asgari , Ryan Benavides , Sourav Halder , Leyu Sun , Dustin Carlson , Eric Goudie , Domenico A. Farina , Sam Kim , Daniel P. Pearce , Colleen M. Witzenburg , Neelesh A. Patankar , Guan-Yu Yang , John E. Pandolfino , Sevketcan Sarikaya , Horacio D. Espinosa\",\"doi\":\"10.1016/j.actbio.2025.02.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The esophagus, the tube-like organ responsible for transporting food from the pharynx to the stomach, operates as a highly mechanical structure, exhibiting complex contraction and distension patterns triggered by neurological impulses. Despite the critical role of mechanics in its function and the need for high-fidelity models of esophageal transport, mechanical characterization studies of human esophagus remain relatively scarce. In addition to the paucity of studies in human specimens, the available results are often scattered in terms of methodology and scope, making it difficult to compare findings across studies and thereby limiting their use in computational models. In this work, we present a detailed passive-mechanical and structural characterization of the esophageal muscular layers, excised from short esophageal segments obtained from live patients with varied clinical presentations. Specifically, we conducted uniaxial and planar biaxial extension tests on the smooth muscle layers, complemented by pre- and post-testing structural characterization via histological imaging. Unlike existing studies, our experimental results on passive behavior are discussed in the context of physiological relevance (e.g., physiological stretches, and activity-inhibiting pathologies), providing valuable insights that guide the subsequent modeling of the esophagus’ mechanical response. As such, this work provides new insights into the passive properties of the fresh human esophagus, expands the existing database of mechanical parameters for computational modeling, and lays the foundation for future studies on active mechanical properties.</div></div><div><h3>Statement of significance</h3><div>Understanding the mechanical properties of the esophagus is crucial for developing accurate models of its function and suitable replacements. This study provides insights into the passive mechanical behavior of fresh human esophageal tissue, enhancing our understanding of how it responds to stretching under physiological conditions. By characterizing the properties of different esophageal layers, obtained from esophagectomy specimens with various presentations, and considering their relevance to both normal and abnormal functioning, this work addresses the gap in ex-vivo human esophagus studies. The findings emphasize the importance of contextually analyzing experimental results within physiological parameters and suggest avenues for future research to further refine our understanding of esophageal mechanics, paving the way for improved diagnostic and therapeutic approaches in managing esophageal disorders.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"196 \",\"pages\":\"Pages 257-270\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706125001497\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125001497","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Ex-vivo mechano-structural characterization of fresh diseased human esophagus
The esophagus, the tube-like organ responsible for transporting food from the pharynx to the stomach, operates as a highly mechanical structure, exhibiting complex contraction and distension patterns triggered by neurological impulses. Despite the critical role of mechanics in its function and the need for high-fidelity models of esophageal transport, mechanical characterization studies of human esophagus remain relatively scarce. In addition to the paucity of studies in human specimens, the available results are often scattered in terms of methodology and scope, making it difficult to compare findings across studies and thereby limiting their use in computational models. In this work, we present a detailed passive-mechanical and structural characterization of the esophageal muscular layers, excised from short esophageal segments obtained from live patients with varied clinical presentations. Specifically, we conducted uniaxial and planar biaxial extension tests on the smooth muscle layers, complemented by pre- and post-testing structural characterization via histological imaging. Unlike existing studies, our experimental results on passive behavior are discussed in the context of physiological relevance (e.g., physiological stretches, and activity-inhibiting pathologies), providing valuable insights that guide the subsequent modeling of the esophagus’ mechanical response. As such, this work provides new insights into the passive properties of the fresh human esophagus, expands the existing database of mechanical parameters for computational modeling, and lays the foundation for future studies on active mechanical properties.
Statement of significance
Understanding the mechanical properties of the esophagus is crucial for developing accurate models of its function and suitable replacements. This study provides insights into the passive mechanical behavior of fresh human esophageal tissue, enhancing our understanding of how it responds to stretching under physiological conditions. By characterizing the properties of different esophageal layers, obtained from esophagectomy specimens with various presentations, and considering their relevance to both normal and abnormal functioning, this work addresses the gap in ex-vivo human esophagus studies. The findings emphasize the importance of contextually analyzing experimental results within physiological parameters and suggest avenues for future research to further refine our understanding of esophageal mechanics, paving the way for improved diagnostic and therapeutic approaches in managing esophageal disorders.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.