利用密度泛函理论和机器学习原子间势蒙特卡罗模拟研究了Fe-Pt合金中原子有序的驱动力。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Tomoyuki Tsuyama, Takeshi Kaneshita, Akira Matsui, Kohei Ochiai, Hiroaki Tanaka, Ryohei Kondo, Takayuki Fukushima, Haruhisa Ohashi, Atsushi Hashimoto, Yoshishige Okuno, Jian-Gang Zhu
{"title":"利用密度泛函理论和机器学习原子间势蒙特卡罗模拟研究了Fe-Pt合金中原子有序的驱动力。","authors":"Tomoyuki Tsuyama, Takeshi Kaneshita, Akira Matsui, Kohei Ochiai, Hiroaki Tanaka, Ryohei Kondo, Takayuki Fukushima, Haruhisa Ohashi, Atsushi Hashimoto, Yoshishige Okuno, Jian-Gang Zhu","doi":"10.1088/1361-648X/adbba5","DOIUrl":null,"url":null,"abstract":"<p><p>We report the mechanisms of atomic ordering in Fe-Pt bimetallic alloys using density functional theory (DFT) and machine-learning interatomic potential Monte Carlo (MLIP-MC) simulations. We clarified that the formation enthalpy of the ordered phase was significantly enhanced by spin polarization compared to that of the disordered phase. Analysis of the density of states indicated that coherence in local potentials in the ordered phase brings energy gain over the disordered phase, when spin is considered. MLIP-MC simulations were performed to investigate the phase transition of atomic ordering at finite temperatures. The model trained using the DFT dataset with spin polarization exhibited quantitatively good agreement with previous experiments and thermodynamic calculations across a wide range of Pt compositions. In contrast, the model without spin significantly underestimated the transition temperature. Through this study, we clarified that spin polarization is essential for accurately accounting for the ordered phase in Fe-Pt bimetallic alloys, even above the Curie temperature, possibly because of the remaining short-range spin order.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Driving force of atomic ordering in Fe-Pt alloys, investigated by density functional theory and machine-learning interatomic potentials Monte Carlo simulations.\",\"authors\":\"Tomoyuki Tsuyama, Takeshi Kaneshita, Akira Matsui, Kohei Ochiai, Hiroaki Tanaka, Ryohei Kondo, Takayuki Fukushima, Haruhisa Ohashi, Atsushi Hashimoto, Yoshishige Okuno, Jian-Gang Zhu\",\"doi\":\"10.1088/1361-648X/adbba5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report the mechanisms of atomic ordering in Fe-Pt bimetallic alloys using density functional theory (DFT) and machine-learning interatomic potential Monte Carlo (MLIP-MC) simulations. We clarified that the formation enthalpy of the ordered phase was significantly enhanced by spin polarization compared to that of the disordered phase. Analysis of the density of states indicated that coherence in local potentials in the ordered phase brings energy gain over the disordered phase, when spin is considered. MLIP-MC simulations were performed to investigate the phase transition of atomic ordering at finite temperatures. The model trained using the DFT dataset with spin polarization exhibited quantitatively good agreement with previous experiments and thermodynamic calculations across a wide range of Pt compositions. In contrast, the model without spin significantly underestimated the transition temperature. Through this study, we clarified that spin polarization is essential for accurately accounting for the ordered phase in Fe-Pt bimetallic alloys, even above the Curie temperature, possibly because of the remaining short-range spin order.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/adbba5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adbba5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

我们使用密度泛函理论(DFT)和机器学习原子间势蒙特卡罗(MLIP-MC)模拟报告了Fe-Pt双金属合金中原子有序的机制。我们澄清了自旋极化使有序相的生成焓比无序相的生成焓显著提高。态密度分析表明,当考虑自旋时,有序相局域势的相干性比无序相带来能量增益 ;采用MLIP-MC模拟研究了有限温度下原子有序相变。使用具有自旋极化的DFT数据集训练的模型在数量上与先前的实验和广泛的Pt 成分的热力学计算结果一致。相比之下,没有自旋的模型明显低估了转变温度。通过这项研究,我们明确了自旋极化对于准确计算Fe-Pt双金属合金中的有序相是必不可少的,即使在居里温度以上,也可能是由于剩余的短程自旋有序相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Driving force of atomic ordering in Fe-Pt alloys, investigated by density functional theory and machine-learning interatomic potentials Monte Carlo simulations.

We report the mechanisms of atomic ordering in Fe-Pt bimetallic alloys using density functional theory (DFT) and machine-learning interatomic potential Monte Carlo (MLIP-MC) simulations. We clarified that the formation enthalpy of the ordered phase was significantly enhanced by spin polarization compared to that of the disordered phase. Analysis of the density of states indicated that coherence in local potentials in the ordered phase brings energy gain over the disordered phase, when spin is considered. MLIP-MC simulations were performed to investigate the phase transition of atomic ordering at finite temperatures. The model trained using the DFT dataset with spin polarization exhibited quantitatively good agreement with previous experiments and thermodynamic calculations across a wide range of Pt compositions. In contrast, the model without spin significantly underestimated the transition temperature. Through this study, we clarified that spin polarization is essential for accurately accounting for the ordered phase in Fe-Pt bimetallic alloys, even above the Curie temperature, possibly because of the remaining short-range spin order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信