早期遮阴云南松幼苗针叶中的非结构性碳水化合物和碳、氮、磷化学计量学对干旱的响应。

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
Chengyao Liu, Junwen Wu, Jianyao Gu, Huaijiao Duan
{"title":"早期遮阴云南松幼苗针叶中的非结构性碳水化合物和碳、氮、磷化学计量学对干旱的响应。","authors":"Chengyao Liu, Junwen Wu, Jianyao Gu, Huaijiao Duan","doi":"10.1186/s12870-025-06265-8","DOIUrl":null,"url":null,"abstract":"<p><p>With global warming, the frequency and duration of drought is becoming longer and longer, which seriously affects the survival of trees. Light intensity control, such as shading, is an important measure in seedling nurseries. However, it is unclear whether early shading affects the drought tolerance of seedlings used in afforestation. We conducted a two-stage experiment on Pinus yunnanensis seedlings. First, three different shading treatments were set, namely HL (0% shading), ML (55% shading), and LL (80% shading). After 90 days of cultivation, the seedlings of each shading treatment were subjected to CK (water content of 90% ± 5%), LD (water content of 75% ± 5%), MD (water content of 60% ± 5%) and SD (water content of 45% ± 5%) continuous drought for 30 days. The contents of non-structural carbohydrates (NSCs), carbon (C), nitrogen (N), and phosphorus (P) and their ratios in the needles of P. yunnanensis seedlings were measured. Early shading affected the starch accumulation and the balance between C absorption and consumption in P. yunnanensis seedlings during drought. Early shading affected C consumption, P utilization efficiency, and N restriction under drought stress. The phenotypic plasticity index showed that the plasticity of P. yunnanensis seedlings under drought stress followed the order: LL > HL > ML. The results of principal component analysis showed that the performance under drought stress followed the order HL > LL > ML. These results indicated that early shading could affect the response of P. yunnanensis seedlings to drought. The P. yunnanensis seedlings grown under HL and LL were more resistant to drought stress than those grown under ML. It is suggested that 0% or 80% shading should be applied at seedling stage to improve the drought resistance of P. yunnanensis.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"270"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871593/pdf/","citationCount":"0","resultStr":"{\"title\":\"Responses of non-structural carbohydrate and carbon, nitrogen, and phosphorus chemometrics in needles of early shaded Pinus yunnanensis seedlings to drought.\",\"authors\":\"Chengyao Liu, Junwen Wu, Jianyao Gu, Huaijiao Duan\",\"doi\":\"10.1186/s12870-025-06265-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With global warming, the frequency and duration of drought is becoming longer and longer, which seriously affects the survival of trees. Light intensity control, such as shading, is an important measure in seedling nurseries. However, it is unclear whether early shading affects the drought tolerance of seedlings used in afforestation. We conducted a two-stage experiment on Pinus yunnanensis seedlings. First, three different shading treatments were set, namely HL (0% shading), ML (55% shading), and LL (80% shading). After 90 days of cultivation, the seedlings of each shading treatment were subjected to CK (water content of 90% ± 5%), LD (water content of 75% ± 5%), MD (water content of 60% ± 5%) and SD (water content of 45% ± 5%) continuous drought for 30 days. The contents of non-structural carbohydrates (NSCs), carbon (C), nitrogen (N), and phosphorus (P) and their ratios in the needles of P. yunnanensis seedlings were measured. Early shading affected the starch accumulation and the balance between C absorption and consumption in P. yunnanensis seedlings during drought. Early shading affected C consumption, P utilization efficiency, and N restriction under drought stress. The phenotypic plasticity index showed that the plasticity of P. yunnanensis seedlings under drought stress followed the order: LL > HL > ML. The results of principal component analysis showed that the performance under drought stress followed the order HL > LL > ML. These results indicated that early shading could affect the response of P. yunnanensis seedlings to drought. The P. yunnanensis seedlings grown under HL and LL were more resistant to drought stress than those grown under ML. It is suggested that 0% or 80% shading should be applied at seedling stage to improve the drought resistance of P. yunnanensis.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":\"25 1\",\"pages\":\"270\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871593/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-025-06265-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06265-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Responses of non-structural carbohydrate and carbon, nitrogen, and phosphorus chemometrics in needles of early shaded Pinus yunnanensis seedlings to drought.

With global warming, the frequency and duration of drought is becoming longer and longer, which seriously affects the survival of trees. Light intensity control, such as shading, is an important measure in seedling nurseries. However, it is unclear whether early shading affects the drought tolerance of seedlings used in afforestation. We conducted a two-stage experiment on Pinus yunnanensis seedlings. First, three different shading treatments were set, namely HL (0% shading), ML (55% shading), and LL (80% shading). After 90 days of cultivation, the seedlings of each shading treatment were subjected to CK (water content of 90% ± 5%), LD (water content of 75% ± 5%), MD (water content of 60% ± 5%) and SD (water content of 45% ± 5%) continuous drought for 30 days. The contents of non-structural carbohydrates (NSCs), carbon (C), nitrogen (N), and phosphorus (P) and their ratios in the needles of P. yunnanensis seedlings were measured. Early shading affected the starch accumulation and the balance between C absorption and consumption in P. yunnanensis seedlings during drought. Early shading affected C consumption, P utilization efficiency, and N restriction under drought stress. The phenotypic plasticity index showed that the plasticity of P. yunnanensis seedlings under drought stress followed the order: LL > HL > ML. The results of principal component analysis showed that the performance under drought stress followed the order HL > LL > ML. These results indicated that early shading could affect the response of P. yunnanensis seedlings to drought. The P. yunnanensis seedlings grown under HL and LL were more resistant to drought stress than those grown under ML. It is suggested that 0% or 80% shading should be applied at seedling stage to improve the drought resistance of P. yunnanensis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信