鸡羊水通过促进角质细胞分化在表皮发育中的潜在活性。

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tokuji Tsuji , Ryo Onogawa , Hideki Tatsukawa , Atsushi Murai , Kiyotaka Hitomi
{"title":"鸡羊水通过促进角质细胞分化在表皮发育中的潜在活性。","authors":"Tokuji Tsuji ,&nbsp;Ryo Onogawa ,&nbsp;Hideki Tatsukawa ,&nbsp;Atsushi Murai ,&nbsp;Kiyotaka Hitomi","doi":"10.1016/j.abb.2025.110365","DOIUrl":null,"url":null,"abstract":"<div><div>Epidermal barrier formation during fetal development, a fundamental biological process in mammals and birds, occurs in the amniotic cavity filled with amniotic fluid (AF). In keratinocytes, indispensable proteins for barrier formation are produced during differentiation, including transglutaminase 1 (TG1) and structural proteins encoded by a gene cluster, epidermal differentiation complex. In general, the chicken fetus rapidly forms a robust epidermal barrier during a relatively short embryonic day (ED); however, little is known about how chicken AF (cAF) contributes to the controls of gene expression of the factors involved in epidermal development. Here, we first demonstrated that the cross-linking activity of TG1 gradually increased, followed by the development of barrier function until ED18 in the chicken fetal epidermis. Then, we revealed that cAF harvested at specific fetal stages had the ability to enhance the expression and activity of TG1, and to facilitate the expression of genes for the other epidermal transglutaminases, structural proteins, and differentiation-related transcription factors in human cultured keratinocytes. Furthermore, the thermal denaturation of cAF components reduced cAF efficacy in promoting the expression of those factors. The fractionated proteinaceous solution of cAF possessed the activity to induce the protein expression of barrier formation-related factors, such as the transcription factor zinc finger protein 750. These results indicated that proteinaceous molecules in cAF have the potential to activate the gene expression networks involved in epidermal barrier formation. This finding will provide novel insights into the physiological role of AF in fetal epidermal development.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"768 ","pages":"Article 110365"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential activity of chicken amniotic fluid in epidermal development by promoting keratinocyte differentiation\",\"authors\":\"Tokuji Tsuji ,&nbsp;Ryo Onogawa ,&nbsp;Hideki Tatsukawa ,&nbsp;Atsushi Murai ,&nbsp;Kiyotaka Hitomi\",\"doi\":\"10.1016/j.abb.2025.110365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Epidermal barrier formation during fetal development, a fundamental biological process in mammals and birds, occurs in the amniotic cavity filled with amniotic fluid (AF). In keratinocytes, indispensable proteins for barrier formation are produced during differentiation, including transglutaminase 1 (TG1) and structural proteins encoded by a gene cluster, epidermal differentiation complex. In general, the chicken fetus rapidly forms a robust epidermal barrier during a relatively short embryonic day (ED); however, little is known about how chicken AF (cAF) contributes to the controls of gene expression of the factors involved in epidermal development. Here, we first demonstrated that the cross-linking activity of TG1 gradually increased, followed by the development of barrier function until ED18 in the chicken fetal epidermis. Then, we revealed that cAF harvested at specific fetal stages had the ability to enhance the expression and activity of TG1, and to facilitate the expression of genes for the other epidermal transglutaminases, structural proteins, and differentiation-related transcription factors in human cultured keratinocytes. Furthermore, the thermal denaturation of cAF components reduced cAF efficacy in promoting the expression of those factors. The fractionated proteinaceous solution of cAF possessed the activity to induce the protein expression of barrier formation-related factors, such as the transcription factor zinc finger protein 750. These results indicated that proteinaceous molecules in cAF have the potential to activate the gene expression networks involved in epidermal barrier formation. This finding will provide novel insights into the physiological role of AF in fetal epidermal development.</div></div>\",\"PeriodicalId\":8174,\"journal\":{\"name\":\"Archives of biochemistry and biophysics\",\"volume\":\"768 \",\"pages\":\"Article 110365\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of biochemistry and biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003986125000785\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986125000785","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Potential activity of chicken amniotic fluid in epidermal development by promoting keratinocyte differentiation

Potential activity of chicken amniotic fluid in epidermal development by promoting keratinocyte differentiation
Epidermal barrier formation during fetal development, a fundamental biological process in mammals and birds, occurs in the amniotic cavity filled with amniotic fluid (AF). In keratinocytes, indispensable proteins for barrier formation are produced during differentiation, including transglutaminase 1 (TG1) and structural proteins encoded by a gene cluster, epidermal differentiation complex. In general, the chicken fetus rapidly forms a robust epidermal barrier during a relatively short embryonic day (ED); however, little is known about how chicken AF (cAF) contributes to the controls of gene expression of the factors involved in epidermal development. Here, we first demonstrated that the cross-linking activity of TG1 gradually increased, followed by the development of barrier function until ED18 in the chicken fetal epidermis. Then, we revealed that cAF harvested at specific fetal stages had the ability to enhance the expression and activity of TG1, and to facilitate the expression of genes for the other epidermal transglutaminases, structural proteins, and differentiation-related transcription factors in human cultured keratinocytes. Furthermore, the thermal denaturation of cAF components reduced cAF efficacy in promoting the expression of those factors. The fractionated proteinaceous solution of cAF possessed the activity to induce the protein expression of barrier formation-related factors, such as the transcription factor zinc finger protein 750. These results indicated that proteinaceous molecules in cAF have the potential to activate the gene expression networks involved in epidermal barrier formation. This finding will provide novel insights into the physiological role of AF in fetal epidermal development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信