Jenna Hannonen, Ali Tuna, Gabriel Gonzalez, Dr. Eduardo Martínez González, Prof. Pekka Peljo
{"title":"铁(II)与1,10-菲罗啉和2,2′;6′,2′-三联吡啶配合物在液流电池中的应用研究","authors":"Jenna Hannonen, Ali Tuna, Gabriel Gonzalez, Dr. Eduardo Martínez González, Prof. Pekka Peljo","doi":"10.1002/celc.202400574","DOIUrl":null,"url":null,"abstract":"<p>Iron(II) complexes with 1,10-phenanthroline (phen) and 2,2′;6′,2“-terpyridine (terpy) ligands bearing different functional groups (methyl, 4-pyridyl, chloro, carboxylic acid) were evaluated for aqueous flow battery applications, detecting oxidation processes followed by coupled chemical reactions. Redox potentials of these compounds were sufficiently high for suitable positive electrolytes (0.88–1.29 V vs. SHE). Randles-Ševčík equation and finite element modelling with COMSOL Multiphysics were utilized in evaluating the diffusion coefficient and the apparent rates of the electron transfer and coupled chemical reactions for the compounds studied by cyclic voltammetry. The systems experience weak adsorption of reactants at glassy carbon, leading to difficulties in determining the latter kinetic parameters. Flow battery tests indicate sufficient flow battery performance with dimethyl functionalized phenanthroline complex [Fe(II)(DMe-phen)<sub>3</sub>]<sup>2+</sup> with 0.06 % per cycle (2.78 % per day) capacity decay. However, [Fe(II)(DMe-phen)<sub>3</sub>]<sup>2+</sup>, as well as [Fe(II)(phen)<sub>3</sub>]<sup>2+</sup>, experience the discharge at two different thermodynamic conditions, suggesting dimer discharge as the source of the lower voltage plateau. The energy efficiency of [Fe(II)(DMe-phen)<sub>3</sub>]<sup>2+</sup> battery was improved by cycling at higher cut-off voltage for 10 cycles, after which the lost capacity was recovered with lower cut-off voltage in one cycle. [Fe(II)(terpy)<sub>2</sub>]<sup>2+</sup> had too many side reactions at lower potentials to be suitable for flow battery applications.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400574","citationCount":"0","resultStr":"{\"title\":\"Investigation of Fe(II) Complexes with 1,10-Phenanthroline and 2,2′;6′,2“-Terpyridine for Aqueous Flow Battery Applications\",\"authors\":\"Jenna Hannonen, Ali Tuna, Gabriel Gonzalez, Dr. Eduardo Martínez González, Prof. Pekka Peljo\",\"doi\":\"10.1002/celc.202400574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Iron(II) complexes with 1,10-phenanthroline (phen) and 2,2′;6′,2“-terpyridine (terpy) ligands bearing different functional groups (methyl, 4-pyridyl, chloro, carboxylic acid) were evaluated for aqueous flow battery applications, detecting oxidation processes followed by coupled chemical reactions. Redox potentials of these compounds were sufficiently high for suitable positive electrolytes (0.88–1.29 V vs. SHE). Randles-Ševčík equation and finite element modelling with COMSOL Multiphysics were utilized in evaluating the diffusion coefficient and the apparent rates of the electron transfer and coupled chemical reactions for the compounds studied by cyclic voltammetry. The systems experience weak adsorption of reactants at glassy carbon, leading to difficulties in determining the latter kinetic parameters. Flow battery tests indicate sufficient flow battery performance with dimethyl functionalized phenanthroline complex [Fe(II)(DMe-phen)<sub>3</sub>]<sup>2+</sup> with 0.06 % per cycle (2.78 % per day) capacity decay. However, [Fe(II)(DMe-phen)<sub>3</sub>]<sup>2+</sup>, as well as [Fe(II)(phen)<sub>3</sub>]<sup>2+</sup>, experience the discharge at two different thermodynamic conditions, suggesting dimer discharge as the source of the lower voltage plateau. The energy efficiency of [Fe(II)(DMe-phen)<sub>3</sub>]<sup>2+</sup> battery was improved by cycling at higher cut-off voltage for 10 cycles, after which the lost capacity was recovered with lower cut-off voltage in one cycle. [Fe(II)(terpy)<sub>2</sub>]<sup>2+</sup> had too many side reactions at lower potentials to be suitable for flow battery applications.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400574\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400574\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400574","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
铁(II)配合物与1,10-菲罗啉(phen)和2,2 ';6 ',2 ' -三联吡啶(terpy)配体(具有不同的官能团(甲基,4-吡啶,氯,羧酸))在水液流电池中的应用进行了评估,以检测氧化过程随后的耦合化学反应。这些化合物的氧化还原电位对于合适的正电解质来说足够高(0.88-1.29 V vs. SHE)。利用Randles-Ševčík方程和COMSOL Multiphysics有限元模型计算了循环伏安法研究的化合物的扩散系数、表观电子转移速率和耦合化学反应速率。该体系对反应物在玻碳上的吸附较弱,导致测定后者动力学参数的困难。液流电池试验表明,二甲基功能化菲罗啉配合物[Fe(II)(DMe-phen)3]2+具有足够的液流电池性能,每循环0.06%(每天2.78%)容量衰减。然而,[Fe(II)(DMe-phen)3]2+和[Fe(II)(phen)3]2+在两种不同的热力学条件下经历了放电,表明二聚体放电是低压平台的来源。[Fe(II)(DMe-phen)3]2+电池在较高的截止电压下循环10次,提高了电池的能量效率,之后在较低的截止电压下循环1次即可恢复损失的容量。[Fe(II)(terpy)2]2+在低电位下有太多的副反应,不适合液流电池的应用。
Investigation of Fe(II) Complexes with 1,10-Phenanthroline and 2,2′;6′,2“-Terpyridine for Aqueous Flow Battery Applications
Iron(II) complexes with 1,10-phenanthroline (phen) and 2,2′;6′,2“-terpyridine (terpy) ligands bearing different functional groups (methyl, 4-pyridyl, chloro, carboxylic acid) were evaluated for aqueous flow battery applications, detecting oxidation processes followed by coupled chemical reactions. Redox potentials of these compounds were sufficiently high for suitable positive electrolytes (0.88–1.29 V vs. SHE). Randles-Ševčík equation and finite element modelling with COMSOL Multiphysics were utilized in evaluating the diffusion coefficient and the apparent rates of the electron transfer and coupled chemical reactions for the compounds studied by cyclic voltammetry. The systems experience weak adsorption of reactants at glassy carbon, leading to difficulties in determining the latter kinetic parameters. Flow battery tests indicate sufficient flow battery performance with dimethyl functionalized phenanthroline complex [Fe(II)(DMe-phen)3]2+ with 0.06 % per cycle (2.78 % per day) capacity decay. However, [Fe(II)(DMe-phen)3]2+, as well as [Fe(II)(phen)3]2+, experience the discharge at two different thermodynamic conditions, suggesting dimer discharge as the source of the lower voltage plateau. The energy efficiency of [Fe(II)(DMe-phen)3]2+ battery was improved by cycling at higher cut-off voltage for 10 cycles, after which the lost capacity was recovered with lower cut-off voltage in one cycle. [Fe(II)(terpy)2]2+ had too many side reactions at lower potentials to be suitable for flow battery applications.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.