{"title":"华南南部寒武系—泥盆系碎屑锆石U-Pb年代学记录及其地质意义","authors":"Fei Liu, Kun Li, Asui Liu, Lejia Yan, Yushuai Yu, Shunbo Cheng, Xiaofei Qiu, Qidi Yang, Xiaokun Huang, Yun Zhou, Xirun Tong","doi":"10.1002/gj.5098","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The southern part of South China records an unconformity between the Devonian and the underlying Cambrian strata, which responded to the Caledonian Movement during the Early Palaeozoic period. Zircon U–Pb dating and in situ Lu–Hf isotope analyses were conducted on four samples from the Cambrian and Early Devonian strata near the unconformity on the west side of Qin-Fang Belt, and their significance for palaeogeographic evolution was discussed followed by regional provenance comparisons. The results show that the Early Devonian and Cambrian samples share the similar detrital zircon age spectra with two prominent peaks at ~985 and ~ 530 Ma, respectively. Based on comparisons of the detrital zircon age spectra and <i>ε</i>\n <sub>Hf</sub>(<i>t</i>) values with contemporary igneous zircons inside and outside of South China, the provenances of the Cambrian strata are deduced to be mainly supplied by the old strata in the East Gondwana margins. But the ultimate provenances were mainly from the East Ghats-Rayner orogenic belt and South Indian Granulite Terrane, and partly from Musgrave Province. The provenances of the Early Devonian strata were mainly derived from the recycling of the underlying Cambrian strata. Both sides of the Qin-Fang Belt share the same detrital zircon age spectra in the Cambrian period, indicating that there existed not the South China Residual Ocean. The Early Palaeozoic (460–430 Ma) detrital zircons are absent in the Early Devonian strata on the Qin-Fang Belt and its west side, but are widely distributed in the Middle Devonian strata on the Qin-Fang Belt and eastern margin of the Yunkai Massif, indicating that the most of the Yunkai Massif was submerged below the sea level in the Early Devonian period and emerged above the sea level in the Middle Devonian period.</p>\n </div>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"60 3","pages":"716-736"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detrital Zircon U–Pb Geochronological Records and Geological Significance of the Cambrian–Devonian Strata in the Southern Part of South China\",\"authors\":\"Fei Liu, Kun Li, Asui Liu, Lejia Yan, Yushuai Yu, Shunbo Cheng, Xiaofei Qiu, Qidi Yang, Xiaokun Huang, Yun Zhou, Xirun Tong\",\"doi\":\"10.1002/gj.5098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The southern part of South China records an unconformity between the Devonian and the underlying Cambrian strata, which responded to the Caledonian Movement during the Early Palaeozoic period. Zircon U–Pb dating and in situ Lu–Hf isotope analyses were conducted on four samples from the Cambrian and Early Devonian strata near the unconformity on the west side of Qin-Fang Belt, and their significance for palaeogeographic evolution was discussed followed by regional provenance comparisons. The results show that the Early Devonian and Cambrian samples share the similar detrital zircon age spectra with two prominent peaks at ~985 and ~ 530 Ma, respectively. Based on comparisons of the detrital zircon age spectra and <i>ε</i>\\n <sub>Hf</sub>(<i>t</i>) values with contemporary igneous zircons inside and outside of South China, the provenances of the Cambrian strata are deduced to be mainly supplied by the old strata in the East Gondwana margins. But the ultimate provenances were mainly from the East Ghats-Rayner orogenic belt and South Indian Granulite Terrane, and partly from Musgrave Province. The provenances of the Early Devonian strata were mainly derived from the recycling of the underlying Cambrian strata. Both sides of the Qin-Fang Belt share the same detrital zircon age spectra in the Cambrian period, indicating that there existed not the South China Residual Ocean. The Early Palaeozoic (460–430 Ma) detrital zircons are absent in the Early Devonian strata on the Qin-Fang Belt and its west side, but are widely distributed in the Middle Devonian strata on the Qin-Fang Belt and eastern margin of the Yunkai Massif, indicating that the most of the Yunkai Massif was submerged below the sea level in the Early Devonian period and emerged above the sea level in the Middle Devonian period.</p>\\n </div>\",\"PeriodicalId\":12784,\"journal\":{\"name\":\"Geological Journal\",\"volume\":\"60 3\",\"pages\":\"716-736\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gj.5098\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5098","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Detrital Zircon U–Pb Geochronological Records and Geological Significance of the Cambrian–Devonian Strata in the Southern Part of South China
The southern part of South China records an unconformity between the Devonian and the underlying Cambrian strata, which responded to the Caledonian Movement during the Early Palaeozoic period. Zircon U–Pb dating and in situ Lu–Hf isotope analyses were conducted on four samples from the Cambrian and Early Devonian strata near the unconformity on the west side of Qin-Fang Belt, and their significance for palaeogeographic evolution was discussed followed by regional provenance comparisons. The results show that the Early Devonian and Cambrian samples share the similar detrital zircon age spectra with two prominent peaks at ~985 and ~ 530 Ma, respectively. Based on comparisons of the detrital zircon age spectra and εHf(t) values with contemporary igneous zircons inside and outside of South China, the provenances of the Cambrian strata are deduced to be mainly supplied by the old strata in the East Gondwana margins. But the ultimate provenances were mainly from the East Ghats-Rayner orogenic belt and South Indian Granulite Terrane, and partly from Musgrave Province. The provenances of the Early Devonian strata were mainly derived from the recycling of the underlying Cambrian strata. Both sides of the Qin-Fang Belt share the same detrital zircon age spectra in the Cambrian period, indicating that there existed not the South China Residual Ocean. The Early Palaeozoic (460–430 Ma) detrital zircons are absent in the Early Devonian strata on the Qin-Fang Belt and its west side, but are widely distributed in the Middle Devonian strata on the Qin-Fang Belt and eastern margin of the Yunkai Massif, indicating that the most of the Yunkai Massif was submerged below the sea level in the Early Devonian period and emerged above the sea level in the Middle Devonian period.
期刊介绍:
In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited.
The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.