钠离子电池中钠含量对锰基层状过渡金属氧化物正极中P2/ p3共生生长的影响

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Kincaid Graff, Dr. Dewen Hou, Dr. Eric Gabriel, Dr. Jehee Park, Alex Koisch, Riley Schrock, Angel Conrado, Dr. Darin Schwartz, Dr. Arturo Gutierrez, Dr. Christopher S. Johnson, Dr. Eungje Lee, Prof. Dr. Hui Xiong
{"title":"钠离子电池中钠含量对锰基层状过渡金属氧化物正极中P2/ p3共生生长的影响","authors":"Kincaid Graff,&nbsp;Dr. Dewen Hou,&nbsp;Dr. Eric Gabriel,&nbsp;Dr. Jehee Park,&nbsp;Alex Koisch,&nbsp;Riley Schrock,&nbsp;Angel Conrado,&nbsp;Dr. Darin Schwartz,&nbsp;Dr. Arturo Gutierrez,&nbsp;Dr. Christopher S. Johnson,&nbsp;Dr. Eungje Lee,&nbsp;Prof. Dr. Hui Xiong","doi":"10.1002/celc.202400662","DOIUrl":null,"url":null,"abstract":"<p>High-manganese content sodium-ion positive electrodes have received heightened interest as an alternative to contemporary Li-ion chemistries due to their high abundance, low toxicity, and even geographical distribution. However, these materials typically suffer from poor capacity, unstable cycling performance, and sluggish Na<sup>+</sup> kinetics. Herein, we explore a manganese-based layered transition metal oxide (Na<sub>x</sub>N<sub>0.25</sub>Mn<sub>0.75</sub>O<sub>2</sub>) and show by X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) that careful variation of the sodium content can instigate the formation of a biphasic intergrowth. This intergrown P2/P3 material offered a higher capacity than its monophasic P2 counterpart due to the P3 structure having greater low-voltage Mn<sup>3+/4+</sup> redox. Further, the intergrowth material offers greatly enhanced kinetics and cycling stability when compared to single-phase P3 material, due to the stabilizing nature of the P2 structure, elucidated by galvanostatic intermittent titration technique (GITT) and <i>operando</i> synchrotron X-ray diffraction. These results highlight the beneficial effect that the intergrowth structure has on the electrochemical performance of high-manganese content positive electrode for future sodium-ion batteries.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400662","citationCount":"0","resultStr":"{\"title\":\"Tailoring P2/P3-Intergrowth in Manganese-Based Layered Transition Metal Oxide Positive Electrodes via Sodium Content for Na-Ion Batteries\",\"authors\":\"Kincaid Graff,&nbsp;Dr. Dewen Hou,&nbsp;Dr. Eric Gabriel,&nbsp;Dr. Jehee Park,&nbsp;Alex Koisch,&nbsp;Riley Schrock,&nbsp;Angel Conrado,&nbsp;Dr. Darin Schwartz,&nbsp;Dr. Arturo Gutierrez,&nbsp;Dr. Christopher S. Johnson,&nbsp;Dr. Eungje Lee,&nbsp;Prof. Dr. Hui Xiong\",\"doi\":\"10.1002/celc.202400662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-manganese content sodium-ion positive electrodes have received heightened interest as an alternative to contemporary Li-ion chemistries due to their high abundance, low toxicity, and even geographical distribution. However, these materials typically suffer from poor capacity, unstable cycling performance, and sluggish Na<sup>+</sup> kinetics. Herein, we explore a manganese-based layered transition metal oxide (Na<sub>x</sub>N<sub>0.25</sub>Mn<sub>0.75</sub>O<sub>2</sub>) and show by X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) that careful variation of the sodium content can instigate the formation of a biphasic intergrowth. This intergrown P2/P3 material offered a higher capacity than its monophasic P2 counterpart due to the P3 structure having greater low-voltage Mn<sup>3+/4+</sup> redox. Further, the intergrowth material offers greatly enhanced kinetics and cycling stability when compared to single-phase P3 material, due to the stabilizing nature of the P2 structure, elucidated by galvanostatic intermittent titration technique (GITT) and <i>operando</i> synchrotron X-ray diffraction. These results highlight the beneficial effect that the intergrowth structure has on the electrochemical performance of high-manganese content positive electrode for future sodium-ion batteries.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400662\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400662\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400662","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

高锰含量钠离子正极由于其高丰度、低毒性和均匀的地理分布,作为当代锂离子化学的替代品,受到了越来越多的关注。然而,这些材料通常存在容量差、循环性能不稳定和Na+动力学缓慢的问题。本文研究了一种锰基层状过渡金属氧化物(NaxN0.25Mn0.75O2),并通过x射线衍射(XRD)和高角度环形暗场扫描透射电镜(HAADF-STEM)表明,钠含量的细微变化可以促进双相互生的形成。由于P3结构具有更强的低电压Mn3+/4+氧化还原,这种杂交P2/P3材料比单相P2材料提供了更高的容量。此外,通过恒流间歇滴定技术(git)和operando同步加速器x射线衍射证实,由于P2结构的稳定性,与单相P3材料相比,共生材料提供了大大增强的动力学和循环稳定性。这些结果突出了共生结构对未来钠离子电池高锰含量正极电化学性能的有益影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring P2/P3-Intergrowth in Manganese-Based Layered Transition Metal Oxide Positive Electrodes via Sodium Content for Na-Ion Batteries

Tailoring P2/P3-Intergrowth in Manganese-Based Layered Transition Metal Oxide Positive Electrodes via Sodium Content for Na-Ion Batteries

High-manganese content sodium-ion positive electrodes have received heightened interest as an alternative to contemporary Li-ion chemistries due to their high abundance, low toxicity, and even geographical distribution. However, these materials typically suffer from poor capacity, unstable cycling performance, and sluggish Na+ kinetics. Herein, we explore a manganese-based layered transition metal oxide (NaxN0.25Mn0.75O2) and show by X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) that careful variation of the sodium content can instigate the formation of a biphasic intergrowth. This intergrown P2/P3 material offered a higher capacity than its monophasic P2 counterpart due to the P3 structure having greater low-voltage Mn3+/4+ redox. Further, the intergrowth material offers greatly enhanced kinetics and cycling stability when compared to single-phase P3 material, due to the stabilizing nature of the P2 structure, elucidated by galvanostatic intermittent titration technique (GITT) and operando synchrotron X-ray diffraction. These results highlight the beneficial effect that the intergrowth structure has on the electrochemical performance of high-manganese content positive electrode for future sodium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信