考虑岩体参数的露天矿铲车系统仿真优化

IF 1.8 4区 工程技术 Q2 ENGINEERING, CIVIL
Shafi Muhammad Pathan, Abdul Ghani Pathan, Muhammad Saad Memon
{"title":"考虑岩体参数的露天矿铲车系统仿真优化","authors":"Shafi Muhammad Pathan,&nbsp;Abdul Ghani Pathan,&nbsp;Muhammad Saad Memon","doi":"10.1155/atr/7939037","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The shovel-truck system remains a popular method for overburden removal and mineral excavation in open-pit mines, needing rigorous logistical management to achieve required productivity levels and maximize resource utilization. Fixed truck assignment (FTA) models represent a prevalent method for truck allocation in open-pit mining, owing to their simplified fleet operational management. However, existing FTA models often overlook the simultaneous minimization of both trucks’ waiting time and shovels’ idle time. Consequently, these oversights lead to suboptimal allocation of trucks to shovels, resulting in either trucks queuing or shovels idling while awaiting trucks. Such inefficiencies contribute to fleet underutilization and increased fuel costs. To tackle the above issue, this research introduces a novel truck dispatching rule, MFTA, which integrates geotechnical parameters and excavating equipment performance to optimize truck allocation in open-pit mining. Geotechnical parameters across various rock and soil formations reveal significant variability, influencing shovel performance assessed through the total loading time (TLT) indicator. Utilizing TLT and travel times of loaded and empty trucks, the study determines the optimal number of fixed trucks allocated to each shovel by minimizing the total waiting time (TWT). A case study conducted in an open-pit coal mine in Thar, Pakistan, validates the approach, demonstrating that adjusting truck allocations based on TLT significantly reduces operational inefficiencies and enhances productivity. The findings highlight the effectiveness of this method in improving overall operational efficiency and economics in open-pit mining. Integrating real-time data and advanced simulation techniques, this research enhances the competitiveness and sustainability of mining operations. These outcomes are particularly relevant for mining professionals aiming to optimize mining operations for improved efficiency and sustainability.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/7939037","citationCount":"0","resultStr":"{\"title\":\"Simulation Optimization of Shovel-Truck System in Open-Pit Mines Considering Rockmass Parameters\",\"authors\":\"Shafi Muhammad Pathan,&nbsp;Abdul Ghani Pathan,&nbsp;Muhammad Saad Memon\",\"doi\":\"10.1155/atr/7939037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The shovel-truck system remains a popular method for overburden removal and mineral excavation in open-pit mines, needing rigorous logistical management to achieve required productivity levels and maximize resource utilization. Fixed truck assignment (FTA) models represent a prevalent method for truck allocation in open-pit mining, owing to their simplified fleet operational management. However, existing FTA models often overlook the simultaneous minimization of both trucks’ waiting time and shovels’ idle time. Consequently, these oversights lead to suboptimal allocation of trucks to shovels, resulting in either trucks queuing or shovels idling while awaiting trucks. Such inefficiencies contribute to fleet underutilization and increased fuel costs. To tackle the above issue, this research introduces a novel truck dispatching rule, MFTA, which integrates geotechnical parameters and excavating equipment performance to optimize truck allocation in open-pit mining. Geotechnical parameters across various rock and soil formations reveal significant variability, influencing shovel performance assessed through the total loading time (TLT) indicator. Utilizing TLT and travel times of loaded and empty trucks, the study determines the optimal number of fixed trucks allocated to each shovel by minimizing the total waiting time (TWT). A case study conducted in an open-pit coal mine in Thar, Pakistan, validates the approach, demonstrating that adjusting truck allocations based on TLT significantly reduces operational inefficiencies and enhances productivity. The findings highlight the effectiveness of this method in improving overall operational efficiency and economics in open-pit mining. Integrating real-time data and advanced simulation techniques, this research enhances the competitiveness and sustainability of mining operations. These outcomes are particularly relevant for mining professionals aiming to optimize mining operations for improved efficiency and sustainability.</p>\\n </div>\",\"PeriodicalId\":50259,\"journal\":{\"name\":\"Journal of Advanced Transportation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/7939037\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/atr/7939037\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/7939037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

铲车系统仍然是露天矿山上覆岩层清除和矿物挖掘的常用方法,需要严格的后勤管理才能达到所需的生产力水平并最大限度地利用资源。固定卡车分配(FTA)模型由于其简化了车队的操作管理,是露天采矿中常用的卡车分配方法。然而,现有的FTA模型往往忽略了同时最小化卡车的等待时间和铲子的空闲时间。因此,这些疏忽导致卡车和铲子的分配不理想,导致卡车排队或铲子在等待卡车时空转。这种低效率导致了车队的利用率不足和燃料成本的增加。为了解决上述问题,本文引入了一种新的卡车调度规则MFTA,该规则综合了岩土参数和挖掘设备性能,以优化露天矿的卡车调度。不同岩石和土壤地层的岩土参数显示出显著的可变性,影响通过总加载时间(TLT)指标评估的铲性能。该研究利用装载和空载卡车的TLT和行驶时间,通过最小化总等待时间(TWT)来确定分配给每台铲车的最佳固定卡车数量。在巴基斯坦Thar的一个露天煤矿进行的案例研究验证了该方法,表明根据TLT调整卡车分配可以显著降低运营效率并提高生产率。研究结果突出了该方法在提高露天采矿整体作业效率和经济效益方面的有效性。结合实时数据和先进的模拟技术,本研究提高了采矿作业的竞争力和可持续性。这些成果与旨在优化采矿作业以提高效率和可持续性的采矿专业人员特别相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simulation Optimization of Shovel-Truck System in Open-Pit Mines Considering Rockmass Parameters

Simulation Optimization of Shovel-Truck System in Open-Pit Mines Considering Rockmass Parameters

The shovel-truck system remains a popular method for overburden removal and mineral excavation in open-pit mines, needing rigorous logistical management to achieve required productivity levels and maximize resource utilization. Fixed truck assignment (FTA) models represent a prevalent method for truck allocation in open-pit mining, owing to their simplified fleet operational management. However, existing FTA models often overlook the simultaneous minimization of both trucks’ waiting time and shovels’ idle time. Consequently, these oversights lead to suboptimal allocation of trucks to shovels, resulting in either trucks queuing or shovels idling while awaiting trucks. Such inefficiencies contribute to fleet underutilization and increased fuel costs. To tackle the above issue, this research introduces a novel truck dispatching rule, MFTA, which integrates geotechnical parameters and excavating equipment performance to optimize truck allocation in open-pit mining. Geotechnical parameters across various rock and soil formations reveal significant variability, influencing shovel performance assessed through the total loading time (TLT) indicator. Utilizing TLT and travel times of loaded and empty trucks, the study determines the optimal number of fixed trucks allocated to each shovel by minimizing the total waiting time (TWT). A case study conducted in an open-pit coal mine in Thar, Pakistan, validates the approach, demonstrating that adjusting truck allocations based on TLT significantly reduces operational inefficiencies and enhances productivity. The findings highlight the effectiveness of this method in improving overall operational efficiency and economics in open-pit mining. Integrating real-time data and advanced simulation techniques, this research enhances the competitiveness and sustainability of mining operations. These outcomes are particularly relevant for mining professionals aiming to optimize mining operations for improved efficiency and sustainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信