Gaowei Yue, Yanwen Zhang, Lu Wang, Minmin Li, Haixiao Lin, Yanbing Li
{"title":"钢化真空玻璃的隔音性能:理论与实验","authors":"Gaowei Yue, Yanwen Zhang, Lu Wang, Minmin Li, Haixiao Lin, Yanbing Li","doi":"10.1111/ijag.16699","DOIUrl":null,"url":null,"abstract":"<p>Compared with insulating glass, tempered vacuum glass (TVG) is not only safer, but also more effective in sound insulation and heat insulation. In this paper, for the sound insulation performance of tempered vacuum glass, the acoustic wave transfer model of TVG is established, and the equation for sound insulation is deduced by using wave transfer method (WTM). Then the actual sound insulation loss of tempered vacuum glass was tested based on the method of reverberation room and anechoic room. finally, the sound insulation loss of tempered vacuum glass under different factors is analyzed. The results show that the theoretical calculation results are consistent with the experimental results about the general change trend of the sound insulation. The thicker the glass, the better the sound insulation. The more the supports in vacuum layer of tempered vacuum glass, the smaller the sound insulation loss. The thickness of the vacuum layer has different sound insulation loss at different frequencies. When the thickness of the vacuum layer is about 0.25 mm, tempered vacuum glass has the best sound insulation performance. This research will have important guiding significance for the selection of building sound insulation glass and the design of sound insulation glass.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sound insulation performance of tempered vacuum glass: Theory and experiment\",\"authors\":\"Gaowei Yue, Yanwen Zhang, Lu Wang, Minmin Li, Haixiao Lin, Yanbing Li\",\"doi\":\"10.1111/ijag.16699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Compared with insulating glass, tempered vacuum glass (TVG) is not only safer, but also more effective in sound insulation and heat insulation. In this paper, for the sound insulation performance of tempered vacuum glass, the acoustic wave transfer model of TVG is established, and the equation for sound insulation is deduced by using wave transfer method (WTM). Then the actual sound insulation loss of tempered vacuum glass was tested based on the method of reverberation room and anechoic room. finally, the sound insulation loss of tempered vacuum glass under different factors is analyzed. The results show that the theoretical calculation results are consistent with the experimental results about the general change trend of the sound insulation. The thicker the glass, the better the sound insulation. The more the supports in vacuum layer of tempered vacuum glass, the smaller the sound insulation loss. The thickness of the vacuum layer has different sound insulation loss at different frequencies. When the thickness of the vacuum layer is about 0.25 mm, tempered vacuum glass has the best sound insulation performance. This research will have important guiding significance for the selection of building sound insulation glass and the design of sound insulation glass.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"16 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16699\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16699","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Sound insulation performance of tempered vacuum glass: Theory and experiment
Compared with insulating glass, tempered vacuum glass (TVG) is not only safer, but also more effective in sound insulation and heat insulation. In this paper, for the sound insulation performance of tempered vacuum glass, the acoustic wave transfer model of TVG is established, and the equation for sound insulation is deduced by using wave transfer method (WTM). Then the actual sound insulation loss of tempered vacuum glass was tested based on the method of reverberation room and anechoic room. finally, the sound insulation loss of tempered vacuum glass under different factors is analyzed. The results show that the theoretical calculation results are consistent with the experimental results about the general change trend of the sound insulation. The thicker the glass, the better the sound insulation. The more the supports in vacuum layer of tempered vacuum glass, the smaller the sound insulation loss. The thickness of the vacuum layer has different sound insulation loss at different frequencies. When the thickness of the vacuum layer is about 0.25 mm, tempered vacuum glass has the best sound insulation performance. This research will have important guiding significance for the selection of building sound insulation glass and the design of sound insulation glass.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.