用稀疏点过程模型从遥测数据估计空间显式生存和死亡风险

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY
Ecology Letters Pub Date : 2025-03-03 DOI:10.1111/ele.70092
Joseph M. Eisaguirre, Madeleine G. Lohman, Graham G. Frye, Heather E. Johnson, Thomas V. Riecke, Perry J. Williams
{"title":"用稀疏点过程模型从遥测数据估计空间显式生存和死亡风险","authors":"Joseph M. Eisaguirre,&nbsp;Madeleine G. Lohman,&nbsp;Graham G. Frye,&nbsp;Heather E. Johnson,&nbsp;Thomas V. Riecke,&nbsp;Perry J. Williams","doi":"10.1111/ele.70092","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Mortality risk for animals often varies spatially and can be linked to how animals use landscapes. While numerous studies collect telemetry data on animals, the focus is typically on the period when animals are alive, even though there is important information that could be gleaned about mortality risk. We introduce a thinned spatial point process (SPP) modelling framework that couples relative abundance and space use with a mortality process to formally treat the occurrence of mortality events across the landscape as a spatial process. We show how this model can be embedded in a hierarchical statistical framework and fit to telemetry data to make inferences about how spatial covariates drive both space use and mortality risk. We apply the method to two data sets to study the effects of roads and habitat on spatially explicit mortality risk: (1) VHF telemetry data collected for willow ptarmigan in Alaska, and (2) hourly GPS telemetry data collected for black bears in Colorado. These case studies demonstrate the applicability of this method for different species and data types, making it broadly useful in enabling inferences about the mechanisms influencing animal survival and spatial population processes while formally treating survival as a spatial process, especially as the development and implementation of joint analyses continue to progress.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 3","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Spatially Explicit Survival and Mortality Risk From Telemetry Data With Thinned Point Process Models\",\"authors\":\"Joseph M. Eisaguirre,&nbsp;Madeleine G. Lohman,&nbsp;Graham G. Frye,&nbsp;Heather E. Johnson,&nbsp;Thomas V. Riecke,&nbsp;Perry J. Williams\",\"doi\":\"10.1111/ele.70092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Mortality risk for animals often varies spatially and can be linked to how animals use landscapes. While numerous studies collect telemetry data on animals, the focus is typically on the period when animals are alive, even though there is important information that could be gleaned about mortality risk. We introduce a thinned spatial point process (SPP) modelling framework that couples relative abundance and space use with a mortality process to formally treat the occurrence of mortality events across the landscape as a spatial process. We show how this model can be embedded in a hierarchical statistical framework and fit to telemetry data to make inferences about how spatial covariates drive both space use and mortality risk. We apply the method to two data sets to study the effects of roads and habitat on spatially explicit mortality risk: (1) VHF telemetry data collected for willow ptarmigan in Alaska, and (2) hourly GPS telemetry data collected for black bears in Colorado. These case studies demonstrate the applicability of this method for different species and data types, making it broadly useful in enabling inferences about the mechanisms influencing animal survival and spatial population processes while formally treating survival as a spatial process, especially as the development and implementation of joint analyses continue to progress.</p>\\n </div>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"28 3\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.70092\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70092","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动物的死亡风险往往因空间而异,并与动物如何利用景观有关。虽然有许多研究收集动物的遥测数据,但重点通常放在动物活着的时期,尽管可以收集到有关死亡风险的重要信息。我们引入了一个简化的空间点过程(SPP)建模框架,将相对丰度和空间使用与死亡率过程结合起来,正式地将景观中死亡率事件的发生视为一个空间过程。我们展示了该模型如何嵌入到分层统计框架中,并适合遥测数据,以推断空间协变量如何驱动空间使用和死亡风险。利用该方法研究了道路和生境对空间显式死亡风险的影响:(1)阿拉斯加州柳雷鸟VHF遥测数据,(2)科罗拉多州黑熊逐时GPS遥测数据。这些案例研究表明,这种方法适用于不同的物种和数据类型,在正式将生存视为一个空间过程的同时,可广泛用于推断影响动物生存和空间种群过程的机制,特别是在制定和实施联合分析不断取得进展的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimating Spatially Explicit Survival and Mortality Risk From Telemetry Data With Thinned Point Process Models

Estimating Spatially Explicit Survival and Mortality Risk From Telemetry Data With Thinned Point Process Models

Mortality risk for animals often varies spatially and can be linked to how animals use landscapes. While numerous studies collect telemetry data on animals, the focus is typically on the period when animals are alive, even though there is important information that could be gleaned about mortality risk. We introduce a thinned spatial point process (SPP) modelling framework that couples relative abundance and space use with a mortality process to formally treat the occurrence of mortality events across the landscape as a spatial process. We show how this model can be embedded in a hierarchical statistical framework and fit to telemetry data to make inferences about how spatial covariates drive both space use and mortality risk. We apply the method to two data sets to study the effects of roads and habitat on spatially explicit mortality risk: (1) VHF telemetry data collected for willow ptarmigan in Alaska, and (2) hourly GPS telemetry data collected for black bears in Colorado. These case studies demonstrate the applicability of this method for different species and data types, making it broadly useful in enabling inferences about the mechanisms influencing animal survival and spatial population processes while formally treating survival as a spatial process, especially as the development and implementation of joint analyses continue to progress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信