{"title":"基于CdS/Ge 2D/3D型异质结光电探测器的自供电宽带计算成像","authors":"Xiaodi Luo, Jiahao Li, Zixin He, Xiaofei Ma, Qinggang Qin, Wei Chen, Zhengyu Xu, Zhifan Qiu, Yingjian Wang, Liang Li, Dongfeng Shi","doi":"10.1002/adpr.202570007","DOIUrl":null,"url":null,"abstract":"<p><b>Type-I Heterojunction Photodetectors</b>\n </p><p>In article number 2400190, Yingjian Wang, Liang Li, Dongfeng Shi, and co-workers present type I van der Waals heterojunction photodetectors that demonstrate exceptional optoelectronic performance, characterized by a broadband spectral response spanning from ultraviolet to near-infrared regions, ultrafast response kinetics, and superior photoresponsivity. These advanced photodetectors, when synergistically combined with state-of-the-art Hadamard single-pixel imaging technology, enable high-fidelity image reconstruction across extensive spectral ranges and under challenging environmental conditions.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202570007","citationCount":"0","resultStr":"{\"title\":\"Self-Powered Broadband Computational Imaging Based on CdS/Ge 2D/3D Type-I Heterojunction Photodetectors\",\"authors\":\"Xiaodi Luo, Jiahao Li, Zixin He, Xiaofei Ma, Qinggang Qin, Wei Chen, Zhengyu Xu, Zhifan Qiu, Yingjian Wang, Liang Li, Dongfeng Shi\",\"doi\":\"10.1002/adpr.202570007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Type-I Heterojunction Photodetectors</b>\\n </p><p>In article number 2400190, Yingjian Wang, Liang Li, Dongfeng Shi, and co-workers present type I van der Waals heterojunction photodetectors that demonstrate exceptional optoelectronic performance, characterized by a broadband spectral response spanning from ultraviolet to near-infrared regions, ultrafast response kinetics, and superior photoresponsivity. These advanced photodetectors, when synergistically combined with state-of-the-art Hadamard single-pixel imaging technology, enable high-fidelity image reconstruction across extensive spectral ranges and under challenging environmental conditions.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"6 3\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202570007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202570007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202570007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-Powered Broadband Computational Imaging Based on CdS/Ge 2D/3D Type-I Heterojunction Photodetectors
Type-I Heterojunction Photodetectors
In article number 2400190, Yingjian Wang, Liang Li, Dongfeng Shi, and co-workers present type I van der Waals heterojunction photodetectors that demonstrate exceptional optoelectronic performance, characterized by a broadband spectral response spanning from ultraviolet to near-infrared regions, ultrafast response kinetics, and superior photoresponsivity. These advanced photodetectors, when synergistically combined with state-of-the-art Hadamard single-pixel imaging technology, enable high-fidelity image reconstruction across extensive spectral ranges and under challenging environmental conditions.