利用第一原理计算探索 Li2SiO3 和 Li2GeO3 化合物的电子、弹性各向异性和热力学性质

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Jian-Li Ma, Zhi-Gang Fan, Qun Wei
{"title":"利用第一原理计算探索 Li2SiO3 和 Li2GeO3 化合物的电子、弹性各向异性和热力学性质","authors":"Jian-Li Ma,&nbsp;Zhi-Gang Fan,&nbsp;Qun Wei","doi":"10.1140/epjb/s10051-025-00886-6","DOIUrl":null,"url":null,"abstract":"<div><p>The first-principles calculation was employed to investigate the electronic structure, mechanical properties, and thermodynamic properties of Li<sub>2</sub>SiO<sub>3</sub> and Li<sub>2</sub>GeO<sub>3</sub> compounds. The optimized lattice parameters and atomic positions are in good agreement with the available experiment datas. The calculated formation enthalpy and elastic constant indicated that Li<sub>2</sub>SiO<sub>3</sub> and Li<sub>2</sub>GeO<sub>3</sub> compounds were thermodynamic and mechanical stability, respectively. The elastic properties, including bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio, were computed based on the obtained elastic constants. Furthermore, the elastic anisotropy was characterized by the graphs of three-dimensional (3D) surface constructions of elastic modulus. Finally, the longitudinal sound velocity, transverse sound velocity, Debye temperature, and minimum thermal conductivity were estimated by the elastic moduli. The obtained results can provide the relevant support of physical parameters for the development and application of Li<sub>2</sub>SiO<sub>3</sub> and Li<sub>2</sub>GeO<sub>3</sub> compounds.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the electronic, elastic anisotropy, and thermodynamic properties of Li2SiO3 and Li2GeO3 compounds using first-principles calculations\",\"authors\":\"Jian-Li Ma,&nbsp;Zhi-Gang Fan,&nbsp;Qun Wei\",\"doi\":\"10.1140/epjb/s10051-025-00886-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The first-principles calculation was employed to investigate the electronic structure, mechanical properties, and thermodynamic properties of Li<sub>2</sub>SiO<sub>3</sub> and Li<sub>2</sub>GeO<sub>3</sub> compounds. The optimized lattice parameters and atomic positions are in good agreement with the available experiment datas. The calculated formation enthalpy and elastic constant indicated that Li<sub>2</sub>SiO<sub>3</sub> and Li<sub>2</sub>GeO<sub>3</sub> compounds were thermodynamic and mechanical stability, respectively. The elastic properties, including bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio, were computed based on the obtained elastic constants. Furthermore, the elastic anisotropy was characterized by the graphs of three-dimensional (3D) surface constructions of elastic modulus. Finally, the longitudinal sound velocity, transverse sound velocity, Debye temperature, and minimum thermal conductivity were estimated by the elastic moduli. The obtained results can provide the relevant support of physical parameters for the development and application of Li<sub>2</sub>SiO<sub>3</sub> and Li<sub>2</sub>GeO<sub>3</sub> compounds.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"98 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-025-00886-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00886-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the electronic, elastic anisotropy, and thermodynamic properties of Li2SiO3 and Li2GeO3 compounds using first-principles calculations

The first-principles calculation was employed to investigate the electronic structure, mechanical properties, and thermodynamic properties of Li2SiO3 and Li2GeO3 compounds. The optimized lattice parameters and atomic positions are in good agreement with the available experiment datas. The calculated formation enthalpy and elastic constant indicated that Li2SiO3 and Li2GeO3 compounds were thermodynamic and mechanical stability, respectively. The elastic properties, including bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio, were computed based on the obtained elastic constants. Furthermore, the elastic anisotropy was characterized by the graphs of three-dimensional (3D) surface constructions of elastic modulus. Finally, the longitudinal sound velocity, transverse sound velocity, Debye temperature, and minimum thermal conductivity were estimated by the elastic moduli. The obtained results can provide the relevant support of physical parameters for the development and application of Li2SiO3 and Li2GeO3 compounds.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信