一维双简并交叉扩散系统弱解的唯一性

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xiuqing Chen, Bang Du
{"title":"一维双简并交叉扩散系统弱解的唯一性","authors":"Xiuqing Chen,&nbsp;Bang Du","doi":"10.1016/j.aml.2025.109521","DOIUrl":null,"url":null,"abstract":"<div><div>The uniqueness of global weak solutions to one-dimensional doubly degenerate cross-diffusion system is shown. The equations model the evolution of feeding bacterial populations in a malnourished environment. The key idea of the proof is applying anti-derivative of the sum of weak solutions to the system.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"166 ","pages":"Article 109521"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of weak solutions to one-dimensional doubly degenerate cross-diffusion system\",\"authors\":\"Xiuqing Chen,&nbsp;Bang Du\",\"doi\":\"10.1016/j.aml.2025.109521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The uniqueness of global weak solutions to one-dimensional doubly degenerate cross-diffusion system is shown. The equations model the evolution of feeding bacterial populations in a malnourished environment. The key idea of the proof is applying anti-derivative of the sum of weak solutions to the system.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"166 \",\"pages\":\"Article 109521\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925000710\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000710","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

证明了一维双简并交叉扩散系统整体弱解的唯一性。这些方程模拟了在营养不良的环境中喂养细菌种群的进化。证明的关键思想是将弱解和的不定积分应用到系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness of weak solutions to one-dimensional doubly degenerate cross-diffusion system
The uniqueness of global weak solutions to one-dimensional doubly degenerate cross-diffusion system is shown. The equations model the evolution of feeding bacterial populations in a malnourished environment. The key idea of the proof is applying anti-derivative of the sum of weak solutions to the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信