Hai Q. Dinh , Bhanu Pratap Yadav , Bac T. Nguyen , Ashish Kumar Upadhyay
{"title":"F2F2[u2]F2[u3]-加性循环码是渐近好的","authors":"Hai Q. Dinh , Bhanu Pratap Yadav , Bac T. Nguyen , Ashish Kumar Upadhyay","doi":"10.1016/j.disc.2025.114459","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct a class of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo></math></span>-additive cyclic codes generated by 3-tuples of polynomials, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is the binary field, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>u</mi><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (<span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span>) and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>u</mi><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (<span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span>). We provide their algebraic structure and show that generator matrices can be obtained for all codes of this class. Using a random Bernoulli variable, we investigate the asymptotic properties in this class of codes. Furthermore, let <span><math><mn>0</mn><mo><</mo><mi>δ</mi><mo><</mo><mn>1</mn></math></span> be a real number and <span><math><mi>k</mi><mo>,</mo><mi>l</mi></math></span> and <em>t</em> be pairwise co-prime positive odd integers such that the entropy at <span><math><mfrac><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mi>l</mi><mo>+</mo><mi>t</mi><mo>)</mo><mi>δ</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> is less than <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, we prove that the relative minimum homogeneous distances converge to <em>δ</em>, and the rates of the random codes converge to <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mi>l</mi><mo>+</mo><mi>t</mi></mrow></mfrac></math></span>. Consequently, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo></math></span>-additive cyclic codes are asymptotically good.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114459"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"F2F2[u2]F2[u3]-additive cyclic codes are asymptotically good\",\"authors\":\"Hai Q. Dinh , Bhanu Pratap Yadav , Bac T. Nguyen , Ashish Kumar Upadhyay\",\"doi\":\"10.1016/j.disc.2025.114459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we construct a class of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo></math></span>-additive cyclic codes generated by 3-tuples of polynomials, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is the binary field, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>u</mi><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (<span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span>) and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>u</mi><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (<span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span>). We provide their algebraic structure and show that generator matrices can be obtained for all codes of this class. Using a random Bernoulli variable, we investigate the asymptotic properties in this class of codes. Furthermore, let <span><math><mn>0</mn><mo><</mo><mi>δ</mi><mo><</mo><mn>1</mn></math></span> be a real number and <span><math><mi>k</mi><mo>,</mo><mi>l</mi></math></span> and <em>t</em> be pairwise co-prime positive odd integers such that the entropy at <span><math><mfrac><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mi>l</mi><mo>+</mo><mi>t</mi><mo>)</mo><mi>δ</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> is less than <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, we prove that the relative minimum homogeneous distances converge to <em>δ</em>, and the rates of the random codes converge to <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mi>l</mi><mo>+</mo><mi>t</mi></mrow></mfrac></math></span>. Consequently, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo></math></span>-additive cyclic codes are asymptotically good.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 7\",\"pages\":\"Article 114459\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25000676\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000676","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
F2F2[u2]F2[u3]-additive cyclic codes are asymptotically good
In this paper, we construct a class of -additive cyclic codes generated by 3-tuples of polynomials, where is the binary field, () and (). We provide their algebraic structure and show that generator matrices can be obtained for all codes of this class. Using a random Bernoulli variable, we investigate the asymptotic properties in this class of codes. Furthermore, let be a real number and and t be pairwise co-prime positive odd integers such that the entropy at is less than , we prove that the relative minimum homogeneous distances converge to δ, and the rates of the random codes converge to . Consequently, -additive cyclic codes are asymptotically good.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.