lawson紧代数域的函数空间

IF 0.6 4区 数学 Q3 MATHEMATICS
Wei Luan , Qingguo Li
{"title":"lawson紧代数域的函数空间","authors":"Wei Luan ,&nbsp;Qingguo Li","doi":"10.1016/j.topol.2025.109295","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate function spaces of Lawson-compact algebraic domains. It is proved that a dcpo is a Lawson-compact algebraic domain iff there is an approximate identity consisting of Scott-continuous kernel operators whose images are prefinite algebraic domains. Using this fact, we obtain the following results:<ul><li><span>(1)</span><span><div>The function space from a bifinite domain to a Lawson-compact algebraic domain is a Lawson-compact algebraic domain.</div></span></li><li><span>(2)</span><span><div>An algebraic domain <em>X</em> is bifinite iff <span><math><mo>[</mo><mi>X</mi><mo>→</mo><mi>L</mi><mo>]</mo></math></span> is a domain for each domain <em>L</em>.</div></span></li><li><span>(3)</span><span><div>The function space from a Lawson-compact algebraic domain to a bifinite domain (not necessarily pointed) is a bifinite domain.</div></span></li></ul></div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"366 ","pages":"Article 109295"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Function spaces of Lawson-compact algebraic domains\",\"authors\":\"Wei Luan ,&nbsp;Qingguo Li\",\"doi\":\"10.1016/j.topol.2025.109295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate function spaces of Lawson-compact algebraic domains. It is proved that a dcpo is a Lawson-compact algebraic domain iff there is an approximate identity consisting of Scott-continuous kernel operators whose images are prefinite algebraic domains. Using this fact, we obtain the following results:<ul><li><span>(1)</span><span><div>The function space from a bifinite domain to a Lawson-compact algebraic domain is a Lawson-compact algebraic domain.</div></span></li><li><span>(2)</span><span><div>An algebraic domain <em>X</em> is bifinite iff <span><math><mo>[</mo><mi>X</mi><mo>→</mo><mi>L</mi><mo>]</mo></math></span> is a domain for each domain <em>L</em>.</div></span></li><li><span>(3)</span><span><div>The function space from a Lawson-compact algebraic domain to a bifinite domain (not necessarily pointed) is a bifinite domain.</div></span></li></ul></div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"366 \",\"pages\":\"Article 109295\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125000938\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125000938","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了lawson -紧代数域上的函数空间。证明了如果存在一个由scott -连续核算子组成的近似恒等式,其象是有限代数域,则dcpo是lawson -紧代数域。利用这一事实,我们得到了以下结果:(1)从双有限域到lawson -紧代数域的函数空间是一个lawson -紧代数域。(2)代数域X是双有限的iff [X→L]是每个域L的一个域。(3)从lawson -紧代数域到双有限域(不一定是点)的函数空间是一个双有限域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Function spaces of Lawson-compact algebraic domains
In this paper, we investigate function spaces of Lawson-compact algebraic domains. It is proved that a dcpo is a Lawson-compact algebraic domain iff there is an approximate identity consisting of Scott-continuous kernel operators whose images are prefinite algebraic domains. Using this fact, we obtain the following results:
  • (1)
    The function space from a bifinite domain to a Lawson-compact algebraic domain is a Lawson-compact algebraic domain.
  • (2)
    An algebraic domain X is bifinite iff [XL] is a domain for each domain L.
  • (3)
    The function space from a Lawson-compact algebraic domain to a bifinite domain (not necessarily pointed) is a bifinite domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信