掺杂轻金属的BCN单层在室温下高效可逆储氢

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Puspamitra Panigrahi , Ian Jason J , Yash Pal , Hoonkyung Lee , K.-F. Aguey-Zinsou , Tanveer Hussain
{"title":"掺杂轻金属的BCN单层在室温下高效可逆储氢","authors":"Puspamitra Panigrahi ,&nbsp;Ian Jason J ,&nbsp;Yash Pal ,&nbsp;Hoonkyung Lee ,&nbsp;K.-F. Aguey-Zinsou ,&nbsp;Tanveer Hussain","doi":"10.1016/j.est.2025.115970","DOIUrl":null,"url":null,"abstract":"<div><div>We employ first-principles density functional theory (DFT) simulations to study the potential of BCN monolayer as a promising hydrogen (H<sub>2</sub>) storage material. Van der Waals corrected simulations reveal that selected light metals bind to defected BCN with strong binding energies of −3.41, −2.52, −2.93, −2.27, and − 4.24 eV for Li, Na, K, Mg, and Ca, respectively. Such strong bindings reduce the inclination of metal dopants to form clusters over the BCN surface. Charge analysis indicates that metal dopants attain cationic characters by donating their valence electrons to BCN, facilitating the adsorption incident H<sub>2</sub> molecules through polarization and electrostatic interactions. A maximum of 16H<sub>2</sub> molecules could be adsorbed to metal-doped BCN, resulting in significantly high gravimetric densities of 10.10, 9.18, 8.41, 9.11, and 8.36 wt% for 2Li-, 2Na-, 2 K-, 2 Mg-, and 2Ca-BCN, respectively, comfortably exceeding the 5.50 wt% target set by the US Department of Energy (DOE). Furthermore, statistical thermodynamic analysis based on the Langmuir model is applied to study the H<sub>2</sub> storage capacity under ambient temperature and pressure conditions. Under practical conditions, adsorption at 30 atm/300 K and desorption at 3 atm/375 K, the maximal reversible H<sub>2</sub> storage capacities of metal-doped BCN systems fall in the range of 6.30–8.70 wt%. We believe that our findings can pave the way for the development of high-performance BCN-based H<sub>2</sub> storage materials.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"116 ","pages":"Article 115970"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and reversible hydrogen storage by light metal-doped BCN monolayers at room temperature\",\"authors\":\"Puspamitra Panigrahi ,&nbsp;Ian Jason J ,&nbsp;Yash Pal ,&nbsp;Hoonkyung Lee ,&nbsp;K.-F. Aguey-Zinsou ,&nbsp;Tanveer Hussain\",\"doi\":\"10.1016/j.est.2025.115970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We employ first-principles density functional theory (DFT) simulations to study the potential of BCN monolayer as a promising hydrogen (H<sub>2</sub>) storage material. Van der Waals corrected simulations reveal that selected light metals bind to defected BCN with strong binding energies of −3.41, −2.52, −2.93, −2.27, and − 4.24 eV for Li, Na, K, Mg, and Ca, respectively. Such strong bindings reduce the inclination of metal dopants to form clusters over the BCN surface. Charge analysis indicates that metal dopants attain cationic characters by donating their valence electrons to BCN, facilitating the adsorption incident H<sub>2</sub> molecules through polarization and electrostatic interactions. A maximum of 16H<sub>2</sub> molecules could be adsorbed to metal-doped BCN, resulting in significantly high gravimetric densities of 10.10, 9.18, 8.41, 9.11, and 8.36 wt% for 2Li-, 2Na-, 2 K-, 2 Mg-, and 2Ca-BCN, respectively, comfortably exceeding the 5.50 wt% target set by the US Department of Energy (DOE). Furthermore, statistical thermodynamic analysis based on the Langmuir model is applied to study the H<sub>2</sub> storage capacity under ambient temperature and pressure conditions. Under practical conditions, adsorption at 30 atm/300 K and desorption at 3 atm/375 K, the maximal reversible H<sub>2</sub> storage capacities of metal-doped BCN systems fall in the range of 6.30–8.70 wt%. We believe that our findings can pave the way for the development of high-performance BCN-based H<sub>2</sub> storage materials.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"116 \",\"pages\":\"Article 115970\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X25006838\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25006838","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

我们采用第一性原理密度泛函理论(DFT)模拟研究了BCN单层作为一种有前途的氢(H2)储存材料的潜力。范德华修正的模拟表明,选定的轻金属与Li, Na, K, Mg和Ca的BCN结合的结合能分别为- 3.41,- 2.52,- 2.93,- 2.27和- 4.24 eV。这种强结合降低了金属掺杂剂在BCN表面形成团簇的倾斜度。电荷分析表明,金属掺杂剂通过将其价电子提供给BCN而获得阳离子性质,有利于通过极化和静电相互作用吸附H2分子。掺杂金属的BCN最多可吸附16H2分子,导致2Li-、2Na-、2k -、2mg -和2Ca-BCN的重量密度分别达到10.10、9.18、8.41、9.11和8.36 wt%,远远超过了美国能源部设定的5.50 wt%的目标。此外,基于Langmuir模型的统计热力学分析研究了环境温度和压力条件下的储氢能力。在实际条件下,在30 atm/300 K下吸附,在3 atm/375 K下解吸,掺杂金属的BCN体系的最大可逆储氢容量在6.30 ~ 8.70 wt%之间。我们相信我们的发现可以为高性能bcn基储氢材料的开发铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient and reversible hydrogen storage by light metal-doped BCN monolayers at room temperature

Efficient and reversible hydrogen storage by light metal-doped BCN monolayers at room temperature
We employ first-principles density functional theory (DFT) simulations to study the potential of BCN monolayer as a promising hydrogen (H2) storage material. Van der Waals corrected simulations reveal that selected light metals bind to defected BCN with strong binding energies of −3.41, −2.52, −2.93, −2.27, and − 4.24 eV for Li, Na, K, Mg, and Ca, respectively. Such strong bindings reduce the inclination of metal dopants to form clusters over the BCN surface. Charge analysis indicates that metal dopants attain cationic characters by donating their valence electrons to BCN, facilitating the adsorption incident H2 molecules through polarization and electrostatic interactions. A maximum of 16H2 molecules could be adsorbed to metal-doped BCN, resulting in significantly high gravimetric densities of 10.10, 9.18, 8.41, 9.11, and 8.36 wt% for 2Li-, 2Na-, 2 K-, 2 Mg-, and 2Ca-BCN, respectively, comfortably exceeding the 5.50 wt% target set by the US Department of Energy (DOE). Furthermore, statistical thermodynamic analysis based on the Langmuir model is applied to study the H2 storage capacity under ambient temperature and pressure conditions. Under practical conditions, adsorption at 30 atm/300 K and desorption at 3 atm/375 K, the maximal reversible H2 storage capacities of metal-doped BCN systems fall in the range of 6.30–8.70 wt%. We believe that our findings can pave the way for the development of high-performance BCN-based H2 storage materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信