HRMS与分子网络

IF 1.8 Q4 TOXICOLOGY
Thomas Gicquel , Romain Pelletier , Nicolas Fabresse , Charline Bottinelli , Isabelle Morel , Brendan Le Daré
{"title":"HRMS与分子网络","authors":"Thomas Gicquel ,&nbsp;Romain Pelletier ,&nbsp;Nicolas Fabresse ,&nbsp;Charline Bottinelli ,&nbsp;Isabelle Morel ,&nbsp;Brendan Le Daré","doi":"10.1016/j.toxac.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>High-resolution mass spectrometry (HRMS) represents a significant advancement in analytical toxicology, enabling the acquisition of large datasets with high accuracy. However, the bioinformatic reprocessing of these data can be limited and constrained by commercial software. Molecular networking (MN) uses bioinformatics tools that facilitate the reprocessing of mass spectrometry data through open-access softwares, allowing for the visual grouping of structurally related molecules within samples.</div></div><div><h3>Methods</h3><div>Using raw data acquired by HRMS/MS, various software programs allow for filtering and reprocessing to generate outputs compatible with graphical softwares. Beyond facilitating the annotation of known compounds within complex samples, this methodology also enables the identification of new metabolites of xenobiotics, presenting many opportunities in clinical and forensic toxicology. Here, we present three original intoxication cases that illustrate the utility of MN to (i) determine which new psychoactive substances have been consumed, (ii) explore the metabolism of the hallucinogenic drug 25E-NBOH, and (iii) visualize complex LC-HR-MS/MS datasets across multiple biological matrices.</div></div><div><h3>Discussion</h3><div>Molecular networking is a versatile tool that enables the bioinformatic reprocessing of HRMS data in clinical and forensic toxicology. It can also support the study of xenobiotic metabolism through data reprocessing from in vivo or in vitro experiments, making it a preferred tool for such analyses. However, this method is time-intensive and requires sophisticated software, which may limit automation.</div></div><div><h3>Conclusion</h3><div>Molecular networking is a highly visual tool that allows for semi-quantitative and in-depth analysis of HR-MS/MS data, providing valuable insights for toxicological research.</div></div>","PeriodicalId":23170,"journal":{"name":"Toxicologie Analytique et Clinique","volume":"37 1","pages":"Page S61"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HRMS and molecular networking\",\"authors\":\"Thomas Gicquel ,&nbsp;Romain Pelletier ,&nbsp;Nicolas Fabresse ,&nbsp;Charline Bottinelli ,&nbsp;Isabelle Morel ,&nbsp;Brendan Le Daré\",\"doi\":\"10.1016/j.toxac.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>High-resolution mass spectrometry (HRMS) represents a significant advancement in analytical toxicology, enabling the acquisition of large datasets with high accuracy. However, the bioinformatic reprocessing of these data can be limited and constrained by commercial software. Molecular networking (MN) uses bioinformatics tools that facilitate the reprocessing of mass spectrometry data through open-access softwares, allowing for the visual grouping of structurally related molecules within samples.</div></div><div><h3>Methods</h3><div>Using raw data acquired by HRMS/MS, various software programs allow for filtering and reprocessing to generate outputs compatible with graphical softwares. Beyond facilitating the annotation of known compounds within complex samples, this methodology also enables the identification of new metabolites of xenobiotics, presenting many opportunities in clinical and forensic toxicology. Here, we present three original intoxication cases that illustrate the utility of MN to (i) determine which new psychoactive substances have been consumed, (ii) explore the metabolism of the hallucinogenic drug 25E-NBOH, and (iii) visualize complex LC-HR-MS/MS datasets across multiple biological matrices.</div></div><div><h3>Discussion</h3><div>Molecular networking is a versatile tool that enables the bioinformatic reprocessing of HRMS data in clinical and forensic toxicology. It can also support the study of xenobiotic metabolism through data reprocessing from in vivo or in vitro experiments, making it a preferred tool for such analyses. However, this method is time-intensive and requires sophisticated software, which may limit automation.</div></div><div><h3>Conclusion</h3><div>Molecular networking is a highly visual tool that allows for semi-quantitative and in-depth analysis of HR-MS/MS data, providing valuable insights for toxicological research.</div></div>\",\"PeriodicalId\":23170,\"journal\":{\"name\":\"Toxicologie Analytique et Clinique\",\"volume\":\"37 1\",\"pages\":\"Page S61\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicologie Analytique et Clinique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352007824002932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicologie Analytique et Clinique","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352007824002932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:高分辨率质谱(HRMS)代表了分析毒理学的重大进步,能够获得高精度的大型数据集。然而,这些数据的生物信息学再处理可能受到商业软件的限制和约束。分子网络(MN)使用生物信息学工具,通过开放获取软件促进质谱数据的再处理,允许对样品中结构相关分子进行视觉分组。方法利用HRMS/MS采集的原始数据,通过各种软件程序进行过滤和再处理,生成与图形软件兼容的输出。除了促进对复杂样品中已知化合物的注释外,该方法还可以鉴定异种生物的新代谢物,为临床和法医毒理学提供许多机会。在这里,我们提出了三个原始中毒病例,说明了MN在以下方面的效用:(i)确定哪些新的精神活性物质已经被消耗,(ii)探索致幻觉药物25E-NBOH的代谢,以及(iii)可视化跨多种生物基质的复杂LC-HR-MS/MS数据集。分子网络是一种多功能工具,可以对临床和法医毒理学中HRMS数据进行生物信息学再处理。它还可以通过体内或体外实验的数据再处理来支持外源代谢的研究,使其成为此类分析的首选工具。然而,这种方法是耗时的,需要复杂的软件,这可能会限制自动化。结论分子网络是一种高度可视化的工具,可以对HR-MS/MS数据进行半定量和深入分析,为毒理学研究提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HRMS and molecular networking

Objective

High-resolution mass spectrometry (HRMS) represents a significant advancement in analytical toxicology, enabling the acquisition of large datasets with high accuracy. However, the bioinformatic reprocessing of these data can be limited and constrained by commercial software. Molecular networking (MN) uses bioinformatics tools that facilitate the reprocessing of mass spectrometry data through open-access softwares, allowing for the visual grouping of structurally related molecules within samples.

Methods

Using raw data acquired by HRMS/MS, various software programs allow for filtering and reprocessing to generate outputs compatible with graphical softwares. Beyond facilitating the annotation of known compounds within complex samples, this methodology also enables the identification of new metabolites of xenobiotics, presenting many opportunities in clinical and forensic toxicology. Here, we present three original intoxication cases that illustrate the utility of MN to (i) determine which new psychoactive substances have been consumed, (ii) explore the metabolism of the hallucinogenic drug 25E-NBOH, and (iii) visualize complex LC-HR-MS/MS datasets across multiple biological matrices.

Discussion

Molecular networking is a versatile tool that enables the bioinformatic reprocessing of HRMS data in clinical and forensic toxicology. It can also support the study of xenobiotic metabolism through data reprocessing from in vivo or in vitro experiments, making it a preferred tool for such analyses. However, this method is time-intensive and requires sophisticated software, which may limit automation.

Conclusion

Molecular networking is a highly visual tool that allows for semi-quantitative and in-depth analysis of HR-MS/MS data, providing valuable insights for toxicological research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
33.30%
发文量
393
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信