Mateusz Gemba, Elżbieta Rosiak, Danuta Kołożyn-Krajewska
{"title":"开发食品工业和医药表面阪崎肠杆菌和丁香杆菌形成生物膜的预测模型","authors":"Mateusz Gemba, Elżbieta Rosiak, Danuta Kołożyn-Krajewska","doi":"10.1016/j.ijfoodmicro.2025.111131","DOIUrl":null,"url":null,"abstract":"<div><div><em>Cronobacter sakazakii</em> and <em>Enterobacter cloacae</em> exhibit the ability to form biofilms, making them resistant to drying, antibiotics, and changes in pH. These biofilms can adhere to different surfaces, including tissues, catheters, enteral feeding tubes, and work surfaces, potentially leading to cross-infection risks in both the food and medical sectors. The objective of this study was to develop a predictive model of biofilm formation over time by <em>C. sakazakii</em> and <em>E. cloacae</em> on medical polyvinyl chloride (PVC) at 37 °C and stainless steel (SS), polypropylene (PP) surfaces at 4 °C and different microbial inoculum concentration. A staining method and spectrophotometric measurement were used to assess biofilm formation. SyStat Software Inc. for Windows Table curve 3D v.4.0.05 and non-linear functions were used to develop predictive models. Analysis of biofilm formation on SS and PP surfaces at 4 °C by all analyzed bacteria suggests that hygiene procedures in refrigeration equipment should be performed daily, the maximum safe storage time for bottled milk is 24 h. At 37 °C <em>E. cloacae</em> posed the highest risk of biofilm formation on the surface of PVC tubing at 6–36 h. The six best response surface models of biofilm formation were selected for presentation. The majority of these models demonstrated good accuracy, as evidenced low mean standard errors (MSE), high coefficient R<sup>2</sup> and Adjusted R(<span><span>Aung and Chang, 2014</span></span><sup>2)</sup>. These models can be utilized to evaluate the microbiological risks in settings such as human milk banks, neonatal intensive care units and food industry plants.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"434 ","pages":"Article 111131"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of predictive models of biofilm formation by C. sakazakii, E. cloacae on surfaces used in the food industry and medicine\",\"authors\":\"Mateusz Gemba, Elżbieta Rosiak, Danuta Kołożyn-Krajewska\",\"doi\":\"10.1016/j.ijfoodmicro.2025.111131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Cronobacter sakazakii</em> and <em>Enterobacter cloacae</em> exhibit the ability to form biofilms, making them resistant to drying, antibiotics, and changes in pH. These biofilms can adhere to different surfaces, including tissues, catheters, enteral feeding tubes, and work surfaces, potentially leading to cross-infection risks in both the food and medical sectors. The objective of this study was to develop a predictive model of biofilm formation over time by <em>C. sakazakii</em> and <em>E. cloacae</em> on medical polyvinyl chloride (PVC) at 37 °C and stainless steel (SS), polypropylene (PP) surfaces at 4 °C and different microbial inoculum concentration. A staining method and spectrophotometric measurement were used to assess biofilm formation. SyStat Software Inc. for Windows Table curve 3D v.4.0.05 and non-linear functions were used to develop predictive models. Analysis of biofilm formation on SS and PP surfaces at 4 °C by all analyzed bacteria suggests that hygiene procedures in refrigeration equipment should be performed daily, the maximum safe storage time for bottled milk is 24 h. At 37 °C <em>E. cloacae</em> posed the highest risk of biofilm formation on the surface of PVC tubing at 6–36 h. The six best response surface models of biofilm formation were selected for presentation. The majority of these models demonstrated good accuracy, as evidenced low mean standard errors (MSE), high coefficient R<sup>2</sup> and Adjusted R(<span><span>Aung and Chang, 2014</span></span><sup>2)</sup>. These models can be utilized to evaluate the microbiological risks in settings such as human milk banks, neonatal intensive care units and food industry plants.</div></div>\",\"PeriodicalId\":14095,\"journal\":{\"name\":\"International journal of food microbiology\",\"volume\":\"434 \",\"pages\":\"Article 111131\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168160525000765\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160525000765","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Development of predictive models of biofilm formation by C. sakazakii, E. cloacae on surfaces used in the food industry and medicine
Cronobacter sakazakii and Enterobacter cloacae exhibit the ability to form biofilms, making them resistant to drying, antibiotics, and changes in pH. These biofilms can adhere to different surfaces, including tissues, catheters, enteral feeding tubes, and work surfaces, potentially leading to cross-infection risks in both the food and medical sectors. The objective of this study was to develop a predictive model of biofilm formation over time by C. sakazakii and E. cloacae on medical polyvinyl chloride (PVC) at 37 °C and stainless steel (SS), polypropylene (PP) surfaces at 4 °C and different microbial inoculum concentration. A staining method and spectrophotometric measurement were used to assess biofilm formation. SyStat Software Inc. for Windows Table curve 3D v.4.0.05 and non-linear functions were used to develop predictive models. Analysis of biofilm formation on SS and PP surfaces at 4 °C by all analyzed bacteria suggests that hygiene procedures in refrigeration equipment should be performed daily, the maximum safe storage time for bottled milk is 24 h. At 37 °C E. cloacae posed the highest risk of biofilm formation on the surface of PVC tubing at 6–36 h. The six best response surface models of biofilm formation were selected for presentation. The majority of these models demonstrated good accuracy, as evidenced low mean standard errors (MSE), high coefficient R2 and Adjusted R(Aung and Chang, 20142). These models can be utilized to evaluate the microbiological risks in settings such as human milk banks, neonatal intensive care units and food industry plants.
期刊介绍:
The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.