调节阴极电解质间相的演化途径以稳定富锂离子阴极材料

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dingyi Fu, Xin Zhang, Yue Zhou, Kun Yang, Jianming Fan*, Liping Li* and Chaochao Fu*, 
{"title":"调节阴极电解质间相的演化途径以稳定富锂离子阴极材料","authors":"Dingyi Fu,&nbsp;Xin Zhang,&nbsp;Yue Zhou,&nbsp;Kun Yang,&nbsp;Jianming Fan*,&nbsp;Liping Li* and Chaochao Fu*,&nbsp;","doi":"10.1021/acssuschemeng.4c0982610.1021/acssuschemeng.4c09826","DOIUrl":null,"url":null,"abstract":"<p >Inorganic components of the cathode electrolyte interphase (CEI) are key to enhance the electrochemical performance of Li-rich cathode materials. However, optimizing inorganic components to stabilize CEI is still a great challenge due to the complex interfacial side reactions in the cycling process. Herein, the inorganic components of the CEI are modulated by constructing a heteroepitaxial spinel@layered interface on the surface of Li-rich materials via H<sub>3</sub>BO<sub>3</sub>-assisted solvothermal post-treatment. The spinel@layered interface regulates the evolution pathway of CEI and the decomposition pathway of the LiPF<sub>6</sub>-based electrolyte by altering the inherent surface catalytic properties of Li-rich materials, thereby in situ-forming the Li<sub>3</sub>PO<sub>4</sub>-dominated CEI. The robust Li<sub>3</sub>PO<sub>4</sub>-rich CEI inhibits electrolyte decomposition, shields the cathode from various side reactions, and prevents the layered-to-spinel phase transition, thus significantly improving the electrochemical performance of Li-rich cathode materials. The treated Li-rich oxide exhibits 83.9% and 84.9% capacity and voltage retention after 150 cycles at 200 mA/g, much better than the pristine Li-rich cathode. The findings provide new insights into the regulation of CEI components in improving the electrochemical performance of Li-rich oxide materials.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 8","pages":"3311–3320 3311–3320"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating the Evolution Pathway of the Cathode Electrolyte Interphase to Stabilize Li-Rich Cathode Materials\",\"authors\":\"Dingyi Fu,&nbsp;Xin Zhang,&nbsp;Yue Zhou,&nbsp;Kun Yang,&nbsp;Jianming Fan*,&nbsp;Liping Li* and Chaochao Fu*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.4c0982610.1021/acssuschemeng.4c09826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Inorganic components of the cathode electrolyte interphase (CEI) are key to enhance the electrochemical performance of Li-rich cathode materials. However, optimizing inorganic components to stabilize CEI is still a great challenge due to the complex interfacial side reactions in the cycling process. Herein, the inorganic components of the CEI are modulated by constructing a heteroepitaxial spinel@layered interface on the surface of Li-rich materials via H<sub>3</sub>BO<sub>3</sub>-assisted solvothermal post-treatment. The spinel@layered interface regulates the evolution pathway of CEI and the decomposition pathway of the LiPF<sub>6</sub>-based electrolyte by altering the inherent surface catalytic properties of Li-rich materials, thereby in situ-forming the Li<sub>3</sub>PO<sub>4</sub>-dominated CEI. The robust Li<sub>3</sub>PO<sub>4</sub>-rich CEI inhibits electrolyte decomposition, shields the cathode from various side reactions, and prevents the layered-to-spinel phase transition, thus significantly improving the electrochemical performance of Li-rich cathode materials. The treated Li-rich oxide exhibits 83.9% and 84.9% capacity and voltage retention after 150 cycles at 200 mA/g, much better than the pristine Li-rich cathode. The findings provide new insights into the regulation of CEI components in improving the electrochemical performance of Li-rich oxide materials.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 8\",\"pages\":\"3311–3320 3311–3320\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c09826\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c09826","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阴极电解质界面无机组分是提高富锂阴极材料电化学性能的关键。然而,由于循环过程中复杂的界面副反应,优化无机组分以稳定CEI仍然是一个巨大的挑战。本文通过h3bo3辅助溶剂热后处理在富锂材料表面构建异质外延spinel@layered界面来调制CEI的无机成分。spinel@layered界面通过改变富锂材料固有的表面催化性质,调控CEI的演化路径和lipf6基电解质的分解路径,从而原位形成以li3po4为主的CEI。坚固的富li3po4 CEI抑制了电解质的分解,屏蔽了阴极的各种副反应,防止了层状到尖晶石的相变,从而显著提高了富锂阴极材料的电化学性能。在200 mA/g下循环150次后,处理后的富锂氧化物的容量和电压保持率分别为83.9%和84.9%,明显优于原始富锂阴极。这些发现为CEI组分在改善富锂氧化物材料电化学性能中的调控提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regulating the Evolution Pathway of the Cathode Electrolyte Interphase to Stabilize Li-Rich Cathode Materials

Regulating the Evolution Pathway of the Cathode Electrolyte Interphase to Stabilize Li-Rich Cathode Materials

Inorganic components of the cathode electrolyte interphase (CEI) are key to enhance the electrochemical performance of Li-rich cathode materials. However, optimizing inorganic components to stabilize CEI is still a great challenge due to the complex interfacial side reactions in the cycling process. Herein, the inorganic components of the CEI are modulated by constructing a heteroepitaxial spinel@layered interface on the surface of Li-rich materials via H3BO3-assisted solvothermal post-treatment. The spinel@layered interface regulates the evolution pathway of CEI and the decomposition pathway of the LiPF6-based electrolyte by altering the inherent surface catalytic properties of Li-rich materials, thereby in situ-forming the Li3PO4-dominated CEI. The robust Li3PO4-rich CEI inhibits electrolyte decomposition, shields the cathode from various side reactions, and prevents the layered-to-spinel phase transition, thus significantly improving the electrochemical performance of Li-rich cathode materials. The treated Li-rich oxide exhibits 83.9% and 84.9% capacity and voltage retention after 150 cycles at 200 mA/g, much better than the pristine Li-rich cathode. The findings provide new insights into the regulation of CEI components in improving the electrochemical performance of Li-rich oxide materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信