Mohammed Alyoubi, Imtiaz Ali and Amr M. Abdelkader*,
{"title":"机器学习驱动的废磷酸铁锂再生优化","authors":"Mohammed Alyoubi, Imtiaz Ali and Amr M. Abdelkader*, ","doi":"10.1021/acssuschemeng.4c1041510.1021/acssuschemeng.4c10415","DOIUrl":null,"url":null,"abstract":"<p >The increasing number of spent lithium-ion batteries demands efficient recovery or regeneration to address the associated environmental challenges. Solid-state direct regeneration of spent electrodes is a promising technique that has received significant attention recently. However, the process still requires considerable optimization before being commercially applied. This study leverages machine learning (ML) to develop highly accurate models that characterize the performance of regenerated lithium iron phosphate (LFP) cathodes through three case studies focused on direct regeneration methods. Five different ML models, including artificial neural network (ANN), advanced classification and regression trees (C&RT), boosted regression trees (BRT), support vector machine (SVM), and K-nearest neighbors (KNN), were trained using the collected data. The optimized regeneration conditions identified by the ANN model indicate that a 6.2% increase in specific discharge capacity can be achieved compared to the conditions determined experimentally. The results also showed a possible increase in cycle life, with higher capacity retention after 1147 cycles. These findings highlight the efficacy of ANN models in predicting and optimizing the performance of regenerated batteries, offering significant reductions in time and resources compared to traditional laboratory methods. Moreover, the concept demonstrated in this study shows strong potential for generalization to other battery materials, enabling the optimization of regeneration processes across a broader range of battery chemistry. While most research emphasizes using support vector machines (SVMs) for modeling newly manufactured batteries, this study demonstrates that ANN models provide superior accuracy for regenerated batteries, paving the way for more sustainable energy storage solutions.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 8","pages":"3349–3361 3349–3361"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Driven Optimization of Spent Lithium Iron Phosphate Regeneration\",\"authors\":\"Mohammed Alyoubi, Imtiaz Ali and Amr M. Abdelkader*, \",\"doi\":\"10.1021/acssuschemeng.4c1041510.1021/acssuschemeng.4c10415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The increasing number of spent lithium-ion batteries demands efficient recovery or regeneration to address the associated environmental challenges. Solid-state direct regeneration of spent electrodes is a promising technique that has received significant attention recently. However, the process still requires considerable optimization before being commercially applied. This study leverages machine learning (ML) to develop highly accurate models that characterize the performance of regenerated lithium iron phosphate (LFP) cathodes through three case studies focused on direct regeneration methods. Five different ML models, including artificial neural network (ANN), advanced classification and regression trees (C&RT), boosted regression trees (BRT), support vector machine (SVM), and K-nearest neighbors (KNN), were trained using the collected data. The optimized regeneration conditions identified by the ANN model indicate that a 6.2% increase in specific discharge capacity can be achieved compared to the conditions determined experimentally. The results also showed a possible increase in cycle life, with higher capacity retention after 1147 cycles. These findings highlight the efficacy of ANN models in predicting and optimizing the performance of regenerated batteries, offering significant reductions in time and resources compared to traditional laboratory methods. Moreover, the concept demonstrated in this study shows strong potential for generalization to other battery materials, enabling the optimization of regeneration processes across a broader range of battery chemistry. While most research emphasizes using support vector machines (SVMs) for modeling newly manufactured batteries, this study demonstrates that ANN models provide superior accuracy for regenerated batteries, paving the way for more sustainable energy storage solutions.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 8\",\"pages\":\"3349–3361 3349–3361\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c10415\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c10415","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Machine Learning-Driven Optimization of Spent Lithium Iron Phosphate Regeneration
The increasing number of spent lithium-ion batteries demands efficient recovery or regeneration to address the associated environmental challenges. Solid-state direct regeneration of spent electrodes is a promising technique that has received significant attention recently. However, the process still requires considerable optimization before being commercially applied. This study leverages machine learning (ML) to develop highly accurate models that characterize the performance of regenerated lithium iron phosphate (LFP) cathodes through three case studies focused on direct regeneration methods. Five different ML models, including artificial neural network (ANN), advanced classification and regression trees (C&RT), boosted regression trees (BRT), support vector machine (SVM), and K-nearest neighbors (KNN), were trained using the collected data. The optimized regeneration conditions identified by the ANN model indicate that a 6.2% increase in specific discharge capacity can be achieved compared to the conditions determined experimentally. The results also showed a possible increase in cycle life, with higher capacity retention after 1147 cycles. These findings highlight the efficacy of ANN models in predicting and optimizing the performance of regenerated batteries, offering significant reductions in time and resources compared to traditional laboratory methods. Moreover, the concept demonstrated in this study shows strong potential for generalization to other battery materials, enabling the optimization of regeneration processes across a broader range of battery chemistry. While most research emphasizes using support vector machines (SVMs) for modeling newly manufactured batteries, this study demonstrates that ANN models provide superior accuracy for regenerated batteries, paving the way for more sustainable energy storage solutions.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.