Xiaojuan Wang, Mengchen Geng, Xiaosen Pan, Yali Wang, Tianbo Zhan, Yang Liu, Jie Li, Xiaojun Ma*, Zhengjian Zhang and Meng Gao*,
{"title":"用于视觉应变绘图的皮肤粘附纤维素光子贴片","authors":"Xiaojuan Wang, Mengchen Geng, Xiaosen Pan, Yali Wang, Tianbo Zhan, Yang Liu, Jie Li, Xiaojun Ma*, Zhengjian Zhang and Meng Gao*, ","doi":"10.1021/acsmaterialslett.4c0184510.1021/acsmaterialslett.4c01845","DOIUrl":null,"url":null,"abstract":"<p >Electronic skin (E-skin), mimicking the multisensory response of human skin, is increasingly utilized in diverse applications such as health monitoring and sensory skins. Here, inspired by the diverse adhesion and responsive structural color phenomena in biological interfaces, we present a cellulose-based, skin-adherent photonic E-skin (CSPE) for dual-mode visual and electrical strain sensing. The CSPE combines a cellulose nanocrystal (CNC)-based conductive, tough photonic hydrogel with a bridging chitosan interlayer that binds the photonic gel and skin together. Endowed with the ionically crosslinked double-network hydrogel as the mechanochromic dissipative matrix and pH-responsive chitosan for topological interpenetration, the CSPE exhibits anisotropic adhesion, ensuring good skin adhesion and preventing unwanted attachments on the opposite surface. Additionally, the photonic hydrogel with vivid structural colors provides quantitative feedback of mechanical stimulation via color mapping and electromechanical changes, enabling precise tracking of human movements. This proposed skin-adherent photonic skin can widen the practical value of bionic electronic skins.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 3","pages":"854–861 854–861"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skin-Adherent, Cellulose-Based Photonic Patch for Visual Strain Mapping\",\"authors\":\"Xiaojuan Wang, Mengchen Geng, Xiaosen Pan, Yali Wang, Tianbo Zhan, Yang Liu, Jie Li, Xiaojun Ma*, Zhengjian Zhang and Meng Gao*, \",\"doi\":\"10.1021/acsmaterialslett.4c0184510.1021/acsmaterialslett.4c01845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electronic skin (E-skin), mimicking the multisensory response of human skin, is increasingly utilized in diverse applications such as health monitoring and sensory skins. Here, inspired by the diverse adhesion and responsive structural color phenomena in biological interfaces, we present a cellulose-based, skin-adherent photonic E-skin (CSPE) for dual-mode visual and electrical strain sensing. The CSPE combines a cellulose nanocrystal (CNC)-based conductive, tough photonic hydrogel with a bridging chitosan interlayer that binds the photonic gel and skin together. Endowed with the ionically crosslinked double-network hydrogel as the mechanochromic dissipative matrix and pH-responsive chitosan for topological interpenetration, the CSPE exhibits anisotropic adhesion, ensuring good skin adhesion and preventing unwanted attachments on the opposite surface. Additionally, the photonic hydrogel with vivid structural colors provides quantitative feedback of mechanical stimulation via color mapping and electromechanical changes, enabling precise tracking of human movements. This proposed skin-adherent photonic skin can widen the practical value of bionic electronic skins.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 3\",\"pages\":\"854–861 854–861\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01845\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01845","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Skin-Adherent, Cellulose-Based Photonic Patch for Visual Strain Mapping
Electronic skin (E-skin), mimicking the multisensory response of human skin, is increasingly utilized in diverse applications such as health monitoring and sensory skins. Here, inspired by the diverse adhesion and responsive structural color phenomena in biological interfaces, we present a cellulose-based, skin-adherent photonic E-skin (CSPE) for dual-mode visual and electrical strain sensing. The CSPE combines a cellulose nanocrystal (CNC)-based conductive, tough photonic hydrogel with a bridging chitosan interlayer that binds the photonic gel and skin together. Endowed with the ionically crosslinked double-network hydrogel as the mechanochromic dissipative matrix and pH-responsive chitosan for topological interpenetration, the CSPE exhibits anisotropic adhesion, ensuring good skin adhesion and preventing unwanted attachments on the opposite surface. Additionally, the photonic hydrogel with vivid structural colors provides quantitative feedback of mechanical stimulation via color mapping and electromechanical changes, enabling precise tracking of human movements. This proposed skin-adherent photonic skin can widen the practical value of bionic electronic skins.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.