具有紫外线至近红外感知能力的可拉伸光电突触,用于视网膜启发计算和视觉自适应传感

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Linfeng Lan, Bo Huang, Yaping Li, Churou Wang, Jiayi Pan, Jiale Huang, Baozhong Chen, Qi zhou, Longzhen Qiu, Yafei Ding, Qing Wan, Zhong Ji, Yuan Li, Junbiao Peng, Yong Cao
{"title":"具有紫外线至近红外感知能力的可拉伸光电突触,用于视网膜启发计算和视觉自适应传感","authors":"Linfeng Lan, Bo Huang, Yaping Li, Churou Wang, Jiayi Pan, Jiale Huang, Baozhong Chen, Qi zhou, Longzhen Qiu, Yafei Ding, Qing Wan, Zhong Ji, Yuan Li, Junbiao Peng, Yong Cao","doi":"10.1038/s41528-025-00390-y","DOIUrl":null,"url":null,"abstract":"<p>Stretchable optoelectronic synapses are attractive for intelligent perception, neuromorphic computation and visual adaptation. Here, we demonstrate a highly stretchable organic optoelectronic synaptic transistor (s-OOST) with a transconductance up to 86 mS that can simultaneously accept modulation of electrical pulses and multi-wavelength light signals (from ultraviolet to near-infrared). The s-OOST achieved highly reliable synaptic plasticity for brain-inspired computation and retina-inspired perception even under 50% tensile strain. Furthermore, the devices exibited vision-adaptive near-infrared sensing ability that was verified by single-pixel scanning imaging. Finally, the multi-wavelength (365 nm–1050 nm) optical synaptic properties were investigated under the applications of imaging memory, polychromatic optical communication and information security (coded by wavelength). This research advances the capabilities of the stretchable integrated systems with vision-adaptive sensing characteristic and computing-in-memory ability.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"49 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stretchable optoelectronic synapses with ultraviolet to near-infrared perception for retina-inspired computing and vision-adaptive sensing\",\"authors\":\"Linfeng Lan, Bo Huang, Yaping Li, Churou Wang, Jiayi Pan, Jiale Huang, Baozhong Chen, Qi zhou, Longzhen Qiu, Yafei Ding, Qing Wan, Zhong Ji, Yuan Li, Junbiao Peng, Yong Cao\",\"doi\":\"10.1038/s41528-025-00390-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stretchable optoelectronic synapses are attractive for intelligent perception, neuromorphic computation and visual adaptation. Here, we demonstrate a highly stretchable organic optoelectronic synaptic transistor (s-OOST) with a transconductance up to 86 mS that can simultaneously accept modulation of electrical pulses and multi-wavelength light signals (from ultraviolet to near-infrared). The s-OOST achieved highly reliable synaptic plasticity for brain-inspired computation and retina-inspired perception even under 50% tensile strain. Furthermore, the devices exibited vision-adaptive near-infrared sensing ability that was verified by single-pixel scanning imaging. Finally, the multi-wavelength (365 nm–1050 nm) optical synaptic properties were investigated under the applications of imaging memory, polychromatic optical communication and information security (coded by wavelength). This research advances the capabilities of the stretchable integrated systems with vision-adaptive sensing characteristic and computing-in-memory ability.</p>\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41528-025-00390-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00390-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stretchable optoelectronic synapses with ultraviolet to near-infrared perception for retina-inspired computing and vision-adaptive sensing

Stretchable optoelectronic synapses with ultraviolet to near-infrared perception for retina-inspired computing and vision-adaptive sensing

Stretchable optoelectronic synapses are attractive for intelligent perception, neuromorphic computation and visual adaptation. Here, we demonstrate a highly stretchable organic optoelectronic synaptic transistor (s-OOST) with a transconductance up to 86 mS that can simultaneously accept modulation of electrical pulses and multi-wavelength light signals (from ultraviolet to near-infrared). The s-OOST achieved highly reliable synaptic plasticity for brain-inspired computation and retina-inspired perception even under 50% tensile strain. Furthermore, the devices exibited vision-adaptive near-infrared sensing ability that was verified by single-pixel scanning imaging. Finally, the multi-wavelength (365 nm–1050 nm) optical synaptic properties were investigated under the applications of imaging memory, polychromatic optical communication and information security (coded by wavelength). This research advances the capabilities of the stretchable integrated systems with vision-adaptive sensing characteristic and computing-in-memory ability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信