Alejandro De la Cadena, Carlos A Renteria, Edita Aksamitiene, Stephen A Boppart
{"title":"无标签高光谱多光子显微镜。","authors":"Alejandro De la Cadena, Carlos A Renteria, Edita Aksamitiene, Stephen A Boppart","doi":"10.1364/OL.547032","DOIUrl":null,"url":null,"abstract":"<p><p>Label-free multiphoton microscopy is a powerful tool for investigating pristine biological specimens. This imaging modality leverages optical signals originating from the nonlinear response of native biomolecules to intense optical radiation, nonlinear signals that allow localizing and quantifying the constituents of specimens, driving applications in biology and medicine. However, since its inception over three decades ago, this approach has operated with a narrowband detection scheme, relying on narrow bandwidths from the entire spectra to derive imaging contrast. This detection scheme hinders the analytical power of the nonlinear microscope, preventing the rigorous unmixing of co-localized constituents with spectral overlap. In this Letter, we shift from the narrowband paradigm to the broadband, demonstrating label-free hyperspectral multiphoton imaging of biological specimens. We validate this configuration by disentangling the constituents of fresh murine tissues by virtue of nonlinear spectra.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 5","pages":"1484-1487"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118598/pdf/","citationCount":"0","resultStr":"{\"title\":\"Label-free hyperspectral multiphoton microscopy.\",\"authors\":\"Alejandro De la Cadena, Carlos A Renteria, Edita Aksamitiene, Stephen A Boppart\",\"doi\":\"10.1364/OL.547032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Label-free multiphoton microscopy is a powerful tool for investigating pristine biological specimens. This imaging modality leverages optical signals originating from the nonlinear response of native biomolecules to intense optical radiation, nonlinear signals that allow localizing and quantifying the constituents of specimens, driving applications in biology and medicine. However, since its inception over three decades ago, this approach has operated with a narrowband detection scheme, relying on narrow bandwidths from the entire spectra to derive imaging contrast. This detection scheme hinders the analytical power of the nonlinear microscope, preventing the rigorous unmixing of co-localized constituents with spectral overlap. In this Letter, we shift from the narrowband paradigm to the broadband, demonstrating label-free hyperspectral multiphoton imaging of biological specimens. We validate this configuration by disentangling the constituents of fresh murine tissues by virtue of nonlinear spectra.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 5\",\"pages\":\"1484-1487\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118598/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.547032\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.547032","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Label-free multiphoton microscopy is a powerful tool for investigating pristine biological specimens. This imaging modality leverages optical signals originating from the nonlinear response of native biomolecules to intense optical radiation, nonlinear signals that allow localizing and quantifying the constituents of specimens, driving applications in biology and medicine. However, since its inception over three decades ago, this approach has operated with a narrowband detection scheme, relying on narrow bandwidths from the entire spectra to derive imaging contrast. This detection scheme hinders the analytical power of the nonlinear microscope, preventing the rigorous unmixing of co-localized constituents with spectral overlap. In this Letter, we shift from the narrowband paradigm to the broadband, demonstrating label-free hyperspectral multiphoton imaging of biological specimens. We validate this configuration by disentangling the constituents of fresh murine tissues by virtue of nonlinear spectra.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.