{"title":"不同对准器材料的初始力和力矩传递分析。","authors":"Thomas Wendl, Brigitte Wendl, Peter Proff","doi":"10.1515/bmt-2025-0003","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to clarify the applied initial forces and moments by different aligners of various materials and manufacturing methods.</p><p><strong>Methods: </strong>The finite-element-method was used to analyze the forces and moments generated by the aligners on a maloccluded tooth. Plaster models of dental arches with a mesiorotated tooth 11 were fabricated, digitized and virtually analyzed. Four types of aligners with various layer thicknesses were selected: two splints with novel shape memory properties: a printable aligner made of the resin Tera Harz TC-85 DAC (Graphy Inc., South Korea) and a self-manufactured aligner consisting of the components polypropylene carbonate and thermoplastic polyurethane. The other two aligners were conventional, thermoformable aligners: CA<sup>®</sup> Pro Clear Aligner (Scheu Dental GmbH, Germany) and Erkodur-al (Erkodent Erich Kopp GmbH, Germany).</p><p><strong>Results: </strong>The force and moment analyses showed that the thermoformable CA<sup>®</sup> Pro Clear Aligner exhibited the highest values. The thermoformed Erkodur-al aligner showed the lowest force loads for all layer thicknesses. The Graphy printed splint showed similar results compared to Erkodur-al at layer thicknesses of 0.40 mm and 0.50 mm.</p><p><strong>Conclusions: </strong>To avoid periodontal overloading, aligners with lower force and moment delivery should be chosen for this type of tooth movement.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis of initial force and moment delivery of different aligner materials.\",\"authors\":\"Thomas Wendl, Brigitte Wendl, Peter Proff\",\"doi\":\"10.1515/bmt-2025-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The aim of this study was to clarify the applied initial forces and moments by different aligners of various materials and manufacturing methods.</p><p><strong>Methods: </strong>The finite-element-method was used to analyze the forces and moments generated by the aligners on a maloccluded tooth. Plaster models of dental arches with a mesiorotated tooth 11 were fabricated, digitized and virtually analyzed. Four types of aligners with various layer thicknesses were selected: two splints with novel shape memory properties: a printable aligner made of the resin Tera Harz TC-85 DAC (Graphy Inc., South Korea) and a self-manufactured aligner consisting of the components polypropylene carbonate and thermoplastic polyurethane. The other two aligners were conventional, thermoformable aligners: CA<sup>®</sup> Pro Clear Aligner (Scheu Dental GmbH, Germany) and Erkodur-al (Erkodent Erich Kopp GmbH, Germany).</p><p><strong>Results: </strong>The force and moment analyses showed that the thermoformable CA<sup>®</sup> Pro Clear Aligner exhibited the highest values. The thermoformed Erkodur-al aligner showed the lowest force loads for all layer thicknesses. The Graphy printed splint showed similar results compared to Erkodur-al at layer thicknesses of 0.40 mm and 0.50 mm.</p><p><strong>Conclusions: </strong>To avoid periodontal overloading, aligners with lower force and moment delivery should be chosen for this type of tooth movement.</p>\",\"PeriodicalId\":93905,\"journal\":{\"name\":\"Biomedizinische Technik. Biomedical engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedizinische Technik. Biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2025-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2025-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
研究目的本研究旨在明确不同材料和制造方法的矫治器施加的初始力和力矩:方法:采用有限元法分析矫正器在畸形牙上产生的力和力矩。制作、数字化和虚拟分析了带有中间定位牙齿 11 的牙弓石膏模型。我们选择了四种不同层厚的矫治器:两种具有新型形状记忆特性的夹板:一种是由树脂 Tera Harz TC-85 DAC(韩国 Graphy 公司)制成的可打印矫治器,另一种是由聚丙烯碳酸盐和热塑性聚氨酯组成的自制矫治器。另外两种矫正器是传统的热成型矫正器:CA® Pro Clear Aligner(德国 Scheu Dental GmbH 公司)和 Erkodur-al (德国 Erkodent Erich Kopp GmbH 公司):结果:力和力矩分析表明,热成型 CA® Pro Clear Aligner 的力和力矩值最高。热成型的 Erkodur-al 矫正器在所有厚度的层上都显示出最低的力负荷。与Erkodur-al相比,Graphy印制夹板在0.40毫米和0.50毫米层厚时显示出相似的结果:结论:为避免牙周负荷过重,这种类型的牙齿移动应选择力和力矩较小的矫治器。
An analysis of initial force and moment delivery of different aligner materials.
Objectives: The aim of this study was to clarify the applied initial forces and moments by different aligners of various materials and manufacturing methods.
Methods: The finite-element-method was used to analyze the forces and moments generated by the aligners on a maloccluded tooth. Plaster models of dental arches with a mesiorotated tooth 11 were fabricated, digitized and virtually analyzed. Four types of aligners with various layer thicknesses were selected: two splints with novel shape memory properties: a printable aligner made of the resin Tera Harz TC-85 DAC (Graphy Inc., South Korea) and a self-manufactured aligner consisting of the components polypropylene carbonate and thermoplastic polyurethane. The other two aligners were conventional, thermoformable aligners: CA® Pro Clear Aligner (Scheu Dental GmbH, Germany) and Erkodur-al (Erkodent Erich Kopp GmbH, Germany).
Results: The force and moment analyses showed that the thermoformable CA® Pro Clear Aligner exhibited the highest values. The thermoformed Erkodur-al aligner showed the lowest force loads for all layer thicknesses. The Graphy printed splint showed similar results compared to Erkodur-al at layer thicknesses of 0.40 mm and 0.50 mm.
Conclusions: To avoid periodontal overloading, aligners with lower force and moment delivery should be chosen for this type of tooth movement.