R2M9高速钢的组织、相组成及表面性能

IF 0.5 Q4 PHYSICS, CONDENSED MATTER
Yu. F. Ivanov, V. E. Gromov, A. B. Yuryev, S. S. Minenko, A. P. Semin, A. S. Chapaikin
{"title":"R2M9高速钢的组织、相组成及表面性能","authors":"Yu. F. Ivanov,&nbsp;V. E. Gromov,&nbsp;A. B. Yuryev,&nbsp;S. S. Minenko,&nbsp;A. P. Semin,&nbsp;A. S. Chapaikin","doi":"10.1134/S1027451024701301","DOIUrl":null,"url":null,"abstract":"<p>Plasma surfacing with a thickness of 4–5 mm (argon-plasma-forming gas) was carried out in a protective alloying atmosphere of nitrogen using a non-current-carrying filler flux-cored wire PP-R2M9. Using methods of modern physical materials science, the structural-phase states, microhardness, and tribological properties of surfacing high-speed steel R2M9 on medium-carbon steel 30KhGSA were studied. It has been established that the deposited layer is characterized by the presence of a carbide frame. The main phases of the deposited layer are a solid solution based on α-iron (63 wt %) and carbides of complex composition Me<sub>6</sub>C, Me<sub>23</sub>C<sub>6</sub>, and Me<sub>7</sub>C<sub>3</sub> (34 wt %). The γ-iron based solid solution is present in a small amount (3 wt %). Carbides of the Me<sub>6</sub>C type, which are the main carbide phase, are localized at the boundaries and in the bulk of α-phase grains, while molybdenum carbide particles of the Mo<sub>2</sub>C composition are found only in the bulk of the grains. At the junctions of α-phase grains, plastic eutectic grains enriched in atoms of iron, molybdenum, tungsten, and carbon are observed. The microhardness of the deposited layer varies across the cross section from 6.6 to 5.2 GPa, the wear parameter is 1.5 × 10<sup>–5</sup> mm<sup>3</sup>/(N m), the friction coefficient is 0.57, and the scalar density of randomly distributed dislocations is 7.6 × 10<sup>10</sup> cm<sup>–2</sup>.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 6","pages":"1395 - 1400"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure, Phase Composition, and Surface Properties of R2M9 High-Speed Steel\",\"authors\":\"Yu. F. Ivanov,&nbsp;V. E. Gromov,&nbsp;A. B. Yuryev,&nbsp;S. S. Minenko,&nbsp;A. P. Semin,&nbsp;A. S. Chapaikin\",\"doi\":\"10.1134/S1027451024701301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plasma surfacing with a thickness of 4–5 mm (argon-plasma-forming gas) was carried out in a protective alloying atmosphere of nitrogen using a non-current-carrying filler flux-cored wire PP-R2M9. Using methods of modern physical materials science, the structural-phase states, microhardness, and tribological properties of surfacing high-speed steel R2M9 on medium-carbon steel 30KhGSA were studied. It has been established that the deposited layer is characterized by the presence of a carbide frame. The main phases of the deposited layer are a solid solution based on α-iron (63 wt %) and carbides of complex composition Me<sub>6</sub>C, Me<sub>23</sub>C<sub>6</sub>, and Me<sub>7</sub>C<sub>3</sub> (34 wt %). The γ-iron based solid solution is present in a small amount (3 wt %). Carbides of the Me<sub>6</sub>C type, which are the main carbide phase, are localized at the boundaries and in the bulk of α-phase grains, while molybdenum carbide particles of the Mo<sub>2</sub>C composition are found only in the bulk of the grains. At the junctions of α-phase grains, plastic eutectic grains enriched in atoms of iron, molybdenum, tungsten, and carbon are observed. The microhardness of the deposited layer varies across the cross section from 6.6 to 5.2 GPa, the wear parameter is 1.5 × 10<sup>–5</sup> mm<sup>3</sup>/(N m), the friction coefficient is 0.57, and the scalar density of randomly distributed dislocations is 7.6 × 10<sup>10</sup> cm<sup>–2</sup>.</p>\",\"PeriodicalId\":671,\"journal\":{\"name\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"volume\":\"18 6\",\"pages\":\"1395 - 1400\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1027451024701301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024701301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

采用非载流填料药芯焊丝PP-R2M9,在氮气的保护性合金化气氛中进行了厚度为4-5 mm的等离子体堆焊(氩等离子体形成气体)。采用现代物理材料科学方法,研究了高速钢R2M9在中碳钢30KhGSA表面堆焊的组织相态、显微硬度和摩擦学性能。已经确定,沉积层的特征是碳化物框架的存在。沉积层的主要相为α-铁固溶体(63% wt %)和由Me6C、Me23C6和Me7C3组成的碳化物(34% wt %)。γ-铁基固溶体以少量(3 wt %)存在。Me6C型碳化物是主要的碳化物相,主要分布在α-相晶粒的边界和块状中,而Mo2C组成的碳化钼颗粒仅分布在晶粒的块状中。在α-相晶粒交界处,观察到富含铁、钼、钨和碳原子的塑性共晶晶粒。沉积层的显微硬度为6.6 ~ 5.2 GPa,磨损参数为1.5 × 10-5 mm3/(N m),摩擦系数为0.57,随机分布位错的标量密度为7.6 × 1010 cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structure, Phase Composition, and Surface Properties of R2M9 High-Speed Steel

Structure, Phase Composition, and Surface Properties of R2M9 High-Speed Steel

Plasma surfacing with a thickness of 4–5 mm (argon-plasma-forming gas) was carried out in a protective alloying atmosphere of nitrogen using a non-current-carrying filler flux-cored wire PP-R2M9. Using methods of modern physical materials science, the structural-phase states, microhardness, and tribological properties of surfacing high-speed steel R2M9 on medium-carbon steel 30KhGSA were studied. It has been established that the deposited layer is characterized by the presence of a carbide frame. The main phases of the deposited layer are a solid solution based on α-iron (63 wt %) and carbides of complex composition Me6C, Me23C6, and Me7C3 (34 wt %). The γ-iron based solid solution is present in a small amount (3 wt %). Carbides of the Me6C type, which are the main carbide phase, are localized at the boundaries and in the bulk of α-phase grains, while molybdenum carbide particles of the Mo2C composition are found only in the bulk of the grains. At the junctions of α-phase grains, plastic eutectic grains enriched in atoms of iron, molybdenum, tungsten, and carbon are observed. The microhardness of the deposited layer varies across the cross section from 6.6 to 5.2 GPa, the wear parameter is 1.5 × 10–5 mm3/(N m), the friction coefficient is 0.57, and the scalar density of randomly distributed dislocations is 7.6 × 1010 cm–2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
25.00%
发文量
144
审稿时长
3-8 weeks
期刊介绍: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信