{"title":"多孔介质中工程注入和抽提系统中局部分散对混合增强的相关性:实验室台阶实验和建模的启示","authors":"Francesca Ziliotto, Mónica Basilio Hazas, Markus Muhr, Navid Ahmadi, Massimo Rolle, Gabriele Chiogna","doi":"10.1007/s11242-025-02155-7","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the dynamics of flow, transport and mixing in subsurface porous media during an engineered injection–extraction (EIE) system. We perform laboratory bench-scale experiments mimicking an EIE system in an unconfined aquifer, and we explore the role of local dispersion on mixing enhancement. The experimental setup is equipped with four wells operated in a sequence, one at a time, creating transient flows and a fluctuating water table impacting the transport dynamics of an injected dye tracer plume. A high-resolution imaging technique is applied to monitor the spatial and temporal evolution of the plume concentration. The experiments are performed in porous media with fine and coarse grain sizes and considering two different sequences of injection and extraction. The plume spreading and mixing are quantified by computing the spatial moments and the plume area, respectively. The Okubo–Weiss parameter is calculated over the plume area to correlate mixing enhancement with changes in flow topology. The results indicate that the operation of EIE system significantly enhances mixing and spreading, particularly when the effective Okubo–Weiss parameter is higher. Furthermore, the mixing enhancement is larger in the experiments performed in the coarse porous media, indicating the importance of local dispersion as a factor for mixing enhancement in EIE systems.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-025-02155-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Relevance of Local Dispersion on Mixing Enhancement in Engineering Injection and Extraction Systems in Porous Media: Insights from Laboratory Bench-Scale Experiments and Modeling\",\"authors\":\"Francesca Ziliotto, Mónica Basilio Hazas, Markus Muhr, Navid Ahmadi, Massimo Rolle, Gabriele Chiogna\",\"doi\":\"10.1007/s11242-025-02155-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work investigates the dynamics of flow, transport and mixing in subsurface porous media during an engineered injection–extraction (EIE) system. We perform laboratory bench-scale experiments mimicking an EIE system in an unconfined aquifer, and we explore the role of local dispersion on mixing enhancement. The experimental setup is equipped with four wells operated in a sequence, one at a time, creating transient flows and a fluctuating water table impacting the transport dynamics of an injected dye tracer plume. A high-resolution imaging technique is applied to monitor the spatial and temporal evolution of the plume concentration. The experiments are performed in porous media with fine and coarse grain sizes and considering two different sequences of injection and extraction. The plume spreading and mixing are quantified by computing the spatial moments and the plume area, respectively. The Okubo–Weiss parameter is calculated over the plume area to correlate mixing enhancement with changes in flow topology. The results indicate that the operation of EIE system significantly enhances mixing and spreading, particularly when the effective Okubo–Weiss parameter is higher. Furthermore, the mixing enhancement is larger in the experiments performed in the coarse porous media, indicating the importance of local dispersion as a factor for mixing enhancement in EIE systems.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"152 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11242-025-02155-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-025-02155-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-025-02155-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Relevance of Local Dispersion on Mixing Enhancement in Engineering Injection and Extraction Systems in Porous Media: Insights from Laboratory Bench-Scale Experiments and Modeling
This work investigates the dynamics of flow, transport and mixing in subsurface porous media during an engineered injection–extraction (EIE) system. We perform laboratory bench-scale experiments mimicking an EIE system in an unconfined aquifer, and we explore the role of local dispersion on mixing enhancement. The experimental setup is equipped with four wells operated in a sequence, one at a time, creating transient flows and a fluctuating water table impacting the transport dynamics of an injected dye tracer plume. A high-resolution imaging technique is applied to monitor the spatial and temporal evolution of the plume concentration. The experiments are performed in porous media with fine and coarse grain sizes and considering two different sequences of injection and extraction. The plume spreading and mixing are quantified by computing the spatial moments and the plume area, respectively. The Okubo–Weiss parameter is calculated over the plume area to correlate mixing enhancement with changes in flow topology. The results indicate that the operation of EIE system significantly enhances mixing and spreading, particularly when the effective Okubo–Weiss parameter is higher. Furthermore, the mixing enhancement is larger in the experiments performed in the coarse porous media, indicating the importance of local dispersion as a factor for mixing enhancement in EIE systems.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).