增强 Cu2O/BaTiO3 p-n 异质结的压电光催化性能,实现高效染料降解

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lei Xiao, Fan Tian, Pengfei Lu, Fan Zhang, Yanchao Zhang, Quankun Zhang, Zhenglong Hu, Juan Xiong
{"title":"增强 Cu2O/BaTiO3 p-n 异质结的压电光催化性能,实现高效染料降解","authors":"Lei Xiao,&nbsp;Fan Tian,&nbsp;Pengfei Lu,&nbsp;Fan Zhang,&nbsp;Yanchao Zhang,&nbsp;Quankun Zhang,&nbsp;Zhenglong Hu,&nbsp;Juan Xiong","doi":"10.1007/s10853-025-10720-0","DOIUrl":null,"url":null,"abstract":"<div><p>Piezo-photocatalysis can effectively combines photocatalysis and piezoelectric polarization to improve the carrier separation efficiency overall performance. Here, Cu<sub>2</sub>O/BaTiO<sub>3</sub> p–n heterojunction composite has been successfully synthesized by facile wet chemical method in this work. The synergistic piezo-photocatalytic effect of Cu<sub>2</sub>O/BaTiO<sub>3</sub> was investigated for the degradation of dye acid orange 7 (AO7) under simulated solar light illumination and ultrasonic vibration. A significant improvement in dye degradation efficiency was observed, with a remarkable 98.5% degradation achieved within 60 min of piezo-photocatalysis treatment, surpassing the degradation rates observed for individual photocatalysis (53.2%) and piezocatalysis (40.8%). This enhancement can be attributed to the higher spatial separation of photogenerated carriers, facilitated by the heterojunction interface electric field of Cu<sub>2</sub>O/BTiO<sub>3</sub> and build-in electric field of BaTiO<sub>3</sub>. This unique spatial separation mechanism results in an increased generation of reactive species, ultimately contributing to enhanced degradation of AO7 molecules. This study presents a feasible approach for the synthesis of the Cu<sub>2</sub>O/BTiO<sub>3</sub> p–n junction and effectively transcending the limitations inherent to individual Cu<sub>2</sub>O or BaTiO<sub>3</sub> in terms of catalytic efficacy.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 9","pages":"4279 - 4292"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced piezo-photocatalytic performance of Cu2O/BaTiO3 p–n heterojunction for efficient dye degradation\",\"authors\":\"Lei Xiao,&nbsp;Fan Tian,&nbsp;Pengfei Lu,&nbsp;Fan Zhang,&nbsp;Yanchao Zhang,&nbsp;Quankun Zhang,&nbsp;Zhenglong Hu,&nbsp;Juan Xiong\",\"doi\":\"10.1007/s10853-025-10720-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Piezo-photocatalysis can effectively combines photocatalysis and piezoelectric polarization to improve the carrier separation efficiency overall performance. Here, Cu<sub>2</sub>O/BaTiO<sub>3</sub> p–n heterojunction composite has been successfully synthesized by facile wet chemical method in this work. The synergistic piezo-photocatalytic effect of Cu<sub>2</sub>O/BaTiO<sub>3</sub> was investigated for the degradation of dye acid orange 7 (AO7) under simulated solar light illumination and ultrasonic vibration. A significant improvement in dye degradation efficiency was observed, with a remarkable 98.5% degradation achieved within 60 min of piezo-photocatalysis treatment, surpassing the degradation rates observed for individual photocatalysis (53.2%) and piezocatalysis (40.8%). This enhancement can be attributed to the higher spatial separation of photogenerated carriers, facilitated by the heterojunction interface electric field of Cu<sub>2</sub>O/BTiO<sub>3</sub> and build-in electric field of BaTiO<sub>3</sub>. This unique spatial separation mechanism results in an increased generation of reactive species, ultimately contributing to enhanced degradation of AO7 molecules. This study presents a feasible approach for the synthesis of the Cu<sub>2</sub>O/BTiO<sub>3</sub> p–n junction and effectively transcending the limitations inherent to individual Cu<sub>2</sub>O or BaTiO<sub>3</sub> in terms of catalytic efficacy.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 9\",\"pages\":\"4279 - 4292\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-10720-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10720-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced piezo-photocatalytic performance of Cu2O/BaTiO3 p–n heterojunction for efficient dye degradation

Piezo-photocatalysis can effectively combines photocatalysis and piezoelectric polarization to improve the carrier separation efficiency overall performance. Here, Cu2O/BaTiO3 p–n heterojunction composite has been successfully synthesized by facile wet chemical method in this work. The synergistic piezo-photocatalytic effect of Cu2O/BaTiO3 was investigated for the degradation of dye acid orange 7 (AO7) under simulated solar light illumination and ultrasonic vibration. A significant improvement in dye degradation efficiency was observed, with a remarkable 98.5% degradation achieved within 60 min of piezo-photocatalysis treatment, surpassing the degradation rates observed for individual photocatalysis (53.2%) and piezocatalysis (40.8%). This enhancement can be attributed to the higher spatial separation of photogenerated carriers, facilitated by the heterojunction interface electric field of Cu2O/BTiO3 and build-in electric field of BaTiO3. This unique spatial separation mechanism results in an increased generation of reactive species, ultimately contributing to enhanced degradation of AO7 molecules. This study presents a feasible approach for the synthesis of the Cu2O/BTiO3 p–n junction and effectively transcending the limitations inherent to individual Cu2O or BaTiO3 in terms of catalytic efficacy.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信