酶设计的生成式人工智能:模型和应用的最新进展

IF 9.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuixiu Wen , Wen Zheng , Uwe T. Bornscheuer , Shuke Wu
{"title":"酶设计的生成式人工智能:模型和应用的最新进展","authors":"Shuixiu Wen ,&nbsp;Wen Zheng ,&nbsp;Uwe T. Bornscheuer ,&nbsp;Shuke Wu","doi":"10.1016/j.cogsc.2025.101010","DOIUrl":null,"url":null,"abstract":"<div><div>Enzyme catalysis is a key enabling technology for green and sustainable production of chemicals. Developing suitable enzymes is at the heart of this technology, which is currently changing by Artificial Intelligence (AI) such as machine learning. AI-based methods were used for enzyme discovery and design. We review the recent advances in generative AI models for enzyme design, with a particular focus on those that have been validated by experiments. Furthermore, we discuss the applications of the enzymes designed by generative AI, including artificial luciferases, non-heme iron (II)-dependent oxygenases, and P450 enzymes. We provide our opinions on several current issues encountered in computational enzyme design. With the fast development of new generative models in enzymes and the implementation of these models by the research community, we believe that the precise design of efficient enzymes with new catalytic functions and/or potential industrial applications will be a mature method in the near future.</div></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"52 ","pages":"Article 101010"},"PeriodicalIF":9.3000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative artificial intelligence for enzyme design: Recent advances in models and applications\",\"authors\":\"Shuixiu Wen ,&nbsp;Wen Zheng ,&nbsp;Uwe T. Bornscheuer ,&nbsp;Shuke Wu\",\"doi\":\"10.1016/j.cogsc.2025.101010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Enzyme catalysis is a key enabling technology for green and sustainable production of chemicals. Developing suitable enzymes is at the heart of this technology, which is currently changing by Artificial Intelligence (AI) such as machine learning. AI-based methods were used for enzyme discovery and design. We review the recent advances in generative AI models for enzyme design, with a particular focus on those that have been validated by experiments. Furthermore, we discuss the applications of the enzymes designed by generative AI, including artificial luciferases, non-heme iron (II)-dependent oxygenases, and P450 enzymes. We provide our opinions on several current issues encountered in computational enzyme design. With the fast development of new generative models in enzymes and the implementation of these models by the research community, we believe that the precise design of efficient enzymes with new catalytic functions and/or potential industrial applications will be a mature method in the near future.</div></div>\",\"PeriodicalId\":54228,\"journal\":{\"name\":\"Current Opinion in Green and Sustainable Chemistry\",\"volume\":\"52 \",\"pages\":\"Article 101010\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452223625000148\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223625000148","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

酶催化是实现化工产品绿色可持续生产的关键技术。开发合适的酶是这项技术的核心,目前正在被机器学习等人工智能(AI)改变。基于人工智能的方法用于酶的发现和设计。我们回顾了酶设计生成人工智能模型的最新进展,特别关注那些已经通过实验验证的模型。此外,我们还讨论了由生成式人工智能设计的酶的应用,包括人工荧光素酶、非血红素铁(II)依赖性加氧酶和P450酶。本文就当前计算酶设计中遇到的几个问题提出了自己的看法。随着酶的新生成模型的快速发展以及这些模型在研究界的实现,我们相信精确设计具有新催化功能和/或潜在工业应用的高效酶将是一种成熟的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative artificial intelligence for enzyme design: Recent advances in models and applications
Enzyme catalysis is a key enabling technology for green and sustainable production of chemicals. Developing suitable enzymes is at the heart of this technology, which is currently changing by Artificial Intelligence (AI) such as machine learning. AI-based methods were used for enzyme discovery and design. We review the recent advances in generative AI models for enzyme design, with a particular focus on those that have been validated by experiments. Furthermore, we discuss the applications of the enzymes designed by generative AI, including artificial luciferases, non-heme iron (II)-dependent oxygenases, and P450 enzymes. We provide our opinions on several current issues encountered in computational enzyme design. With the fast development of new generative models in enzymes and the implementation of these models by the research community, we believe that the precise design of efficient enzymes with new catalytic functions and/or potential industrial applications will be a mature method in the near future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.00
自引率
2.20%
发文量
140
审稿时长
103 days
期刊介绍: The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信