减少县级交通碳排放的途径:生命周期视角和多情景分析

IF 7.9 2区 工程技术 Q1 ENERGY & FUELS
Xiaohuan Xie , Yuelin Zhong , Shengyuan Li , Zhonghua Gou
{"title":"减少县级交通碳排放的途径:生命周期视角和多情景分析","authors":"Xiaohuan Xie ,&nbsp;Yuelin Zhong ,&nbsp;Shengyuan Li ,&nbsp;Zhonghua Gou","doi":"10.1016/j.esr.2025.101678","DOIUrl":null,"url":null,"abstract":"<div><div>Energy-related carbon emissions from the transportation sector are one of the major obstacles to achieving global carbon reduction targets. Current research on transportation energy mainly focuses on the energy end-use stage, with a lack of simulations covering both the front-end and end-use stages of transportation energy. This study, from a life-cycle perspective, conducts a carbon emission simulation for county-level transportation. Based on the 2019 transportation data of Huadu District, Guangzhou, the study combines life-cycle assessment (LCA) with the Low Emission Analysis Platform (LEAP) to simulate changes in transportation carbon emissions from 2020 to 2050. The results indicate that: (1) The Energy-Saving scenario has the greatest carbon reduction potential, capable of reducing carbon emissions by 75 %. (2) Energy efficiency factors have the most significant carbon reduction effect in transportation. (3) There is a carbon transfer phenomenon from \"Tank-to-Wheel\" to \"Well-to-Tank\" in transportation energy. (4) Embodied carbon accounts for 40 %, while operational carbon accounts for 60 % of the entire transportation energy life cycle. Based on the above results, the study suggests that the government should increase policy support and technological innovation, invest in public transportation infrastructure, and strengthen carbon management throughout the entire lifecycle to comprehensively enhance the carbon emission reduction effects of transportation energy.</div></div>","PeriodicalId":11546,"journal":{"name":"Energy Strategy Reviews","volume":"58 ","pages":"Article 101678"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathways for reducing carbon emissions in county-level transportation: A life cycle perspective and multi-scenario analysis\",\"authors\":\"Xiaohuan Xie ,&nbsp;Yuelin Zhong ,&nbsp;Shengyuan Li ,&nbsp;Zhonghua Gou\",\"doi\":\"10.1016/j.esr.2025.101678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Energy-related carbon emissions from the transportation sector are one of the major obstacles to achieving global carbon reduction targets. Current research on transportation energy mainly focuses on the energy end-use stage, with a lack of simulations covering both the front-end and end-use stages of transportation energy. This study, from a life-cycle perspective, conducts a carbon emission simulation for county-level transportation. Based on the 2019 transportation data of Huadu District, Guangzhou, the study combines life-cycle assessment (LCA) with the Low Emission Analysis Platform (LEAP) to simulate changes in transportation carbon emissions from 2020 to 2050. The results indicate that: (1) The Energy-Saving scenario has the greatest carbon reduction potential, capable of reducing carbon emissions by 75 %. (2) Energy efficiency factors have the most significant carbon reduction effect in transportation. (3) There is a carbon transfer phenomenon from \\\"Tank-to-Wheel\\\" to \\\"Well-to-Tank\\\" in transportation energy. (4) Embodied carbon accounts for 40 %, while operational carbon accounts for 60 % of the entire transportation energy life cycle. Based on the above results, the study suggests that the government should increase policy support and technological innovation, invest in public transportation infrastructure, and strengthen carbon management throughout the entire lifecycle to comprehensively enhance the carbon emission reduction effects of transportation energy.</div></div>\",\"PeriodicalId\":11546,\"journal\":{\"name\":\"Energy Strategy Reviews\",\"volume\":\"58 \",\"pages\":\"Article 101678\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Strategy Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211467X25000410\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Strategy Reviews","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211467X25000410","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pathways for reducing carbon emissions in county-level transportation: A life cycle perspective and multi-scenario analysis
Energy-related carbon emissions from the transportation sector are one of the major obstacles to achieving global carbon reduction targets. Current research on transportation energy mainly focuses on the energy end-use stage, with a lack of simulations covering both the front-end and end-use stages of transportation energy. This study, from a life-cycle perspective, conducts a carbon emission simulation for county-level transportation. Based on the 2019 transportation data of Huadu District, Guangzhou, the study combines life-cycle assessment (LCA) with the Low Emission Analysis Platform (LEAP) to simulate changes in transportation carbon emissions from 2020 to 2050. The results indicate that: (1) The Energy-Saving scenario has the greatest carbon reduction potential, capable of reducing carbon emissions by 75 %. (2) Energy efficiency factors have the most significant carbon reduction effect in transportation. (3) There is a carbon transfer phenomenon from "Tank-to-Wheel" to "Well-to-Tank" in transportation energy. (4) Embodied carbon accounts for 40 %, while operational carbon accounts for 60 % of the entire transportation energy life cycle. Based on the above results, the study suggests that the government should increase policy support and technological innovation, invest in public transportation infrastructure, and strengthen carbon management throughout the entire lifecycle to comprehensively enhance the carbon emission reduction effects of transportation energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Strategy Reviews
Energy Strategy Reviews Energy-Energy (miscellaneous)
CiteScore
12.80
自引率
4.90%
发文量
167
审稿时长
40 weeks
期刊介绍: Energy Strategy Reviews is a gold open access journal that provides authoritative content on strategic decision-making and vision-sharing related to society''s energy needs. Energy Strategy Reviews publishes: • Analyses • Methodologies • Case Studies • Reviews And by invitation: • Report Reviews • Viewpoints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信