{"title":"一种用于少量学习的稳健传导分布校准方法","authors":"Jingcong Li, Chunjin Ye, Fei Wang, Jiahui Pan","doi":"10.1016/j.patcog.2025.111488","DOIUrl":null,"url":null,"abstract":"<div><div>Few-shot learning (FSL) has gained much attention and has recently made substantial progress. To alleviate the data constraints in FSL, previous studies have attempted to generate features by learning a feature distribution. However, the learned distribution is biased and unstable due to limited labeled data, and the features from it can be even more biased, which decreases its generalizability. This paper proposes a Robust Transductive Distribution Calibration (RTDC) method to estimate feature distributions of few-shot classes in a more accurate and robust way. First, we capture the underlying distribution information by precisely estimating the covariance matrix of each novel category. Second, we consider the distribution similarity between labeled and unlabeled samples using the estimated covariance matrix and then optimize the feature distribution in a transductive manner. Extensive experiments demonstrated the effectiveness and significance of our method on several FSL benchmarks, including <em>mini</em>ImageNet, <em>tiered</em>ImageNet, CUB, and CIFAR-FS.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"163 ","pages":"Article 111488"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust transductive distribution calibration method for few-shot learning\",\"authors\":\"Jingcong Li, Chunjin Ye, Fei Wang, Jiahui Pan\",\"doi\":\"10.1016/j.patcog.2025.111488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Few-shot learning (FSL) has gained much attention and has recently made substantial progress. To alleviate the data constraints in FSL, previous studies have attempted to generate features by learning a feature distribution. However, the learned distribution is biased and unstable due to limited labeled data, and the features from it can be even more biased, which decreases its generalizability. This paper proposes a Robust Transductive Distribution Calibration (RTDC) method to estimate feature distributions of few-shot classes in a more accurate and robust way. First, we capture the underlying distribution information by precisely estimating the covariance matrix of each novel category. Second, we consider the distribution similarity between labeled and unlabeled samples using the estimated covariance matrix and then optimize the feature distribution in a transductive manner. Extensive experiments demonstrated the effectiveness and significance of our method on several FSL benchmarks, including <em>mini</em>ImageNet, <em>tiered</em>ImageNet, CUB, and CIFAR-FS.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"163 \",\"pages\":\"Article 111488\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325001487\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325001487","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A robust transductive distribution calibration method for few-shot learning
Few-shot learning (FSL) has gained much attention and has recently made substantial progress. To alleviate the data constraints in FSL, previous studies have attempted to generate features by learning a feature distribution. However, the learned distribution is biased and unstable due to limited labeled data, and the features from it can be even more biased, which decreases its generalizability. This paper proposes a Robust Transductive Distribution Calibration (RTDC) method to estimate feature distributions of few-shot classes in a more accurate and robust way. First, we capture the underlying distribution information by precisely estimating the covariance matrix of each novel category. Second, we consider the distribution similarity between labeled and unlabeled samples using the estimated covariance matrix and then optimize the feature distribution in a transductive manner. Extensive experiments demonstrated the effectiveness and significance of our method on several FSL benchmarks, including miniImageNet, tieredImageNet, CUB, and CIFAR-FS.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.